Responses of mesenteric and renal blood flow dynamics to acute denervation in anesthetized rats.

Am J Physiol

Lady Davis Institute, Department of Medicine, SMBD-Jewish General Hospital, Montreal H3T 1E2, Canada H3A 2B4.

Published: November 1998

Previous studies have shown that renal autoregulation dynamically stabilizes renal blood flow (RBF). The role of renal nerves, particularly of a baroreflex component, in dynamic regulation of RBF remains unclear. The relative roles of autoregulation and mesenteric nerves in dynamic regulation of blood flow in the superior mesenteric artery (MBF) are similarly unclear. In this study, transfer function analysis was used to identify autoregulatory and baroreflex components in the dynamic regulation of RBF and MBF in Wistar rats and young spontaneously hypertensive rats (SHR) anesthetized with isoflurane or halothane. Wistar rats showed effective dynamic autoregulation of both MBF and RBF, as did SHR. Autoregulation was faster in the kidney (0.22 +/- 0.01 Hz) than in the gut (0.13 +/- 0.01 Hz). In the mesenteric, but not the renal bed, the admittance phase was significantly negative between 0.25 and 0. 7 Hz, and the negative phase was abrogated by mesenteric denervation, indicating the presence of an arterial baroreflex. The baroreflex was faster than autoregulation in either bed. The presence of sympathetic effects unrelated to blood pressure was inferred in both vascular beds and appeared to be stronger in the SHR than in the Wistar rats. It is concluded that a physiologically significant baroreflex operates on the mesenteric, but not the renal circulation and that blood flow in both beds is effectively stabilized by autoregulation.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpregu.1998.275.5.R1543DOI Listing

Publication Analysis

Top Keywords

blood flow
16
mesenteric renal
12
dynamic regulation
12
wistar rats
12
renal blood
8
regulation rbf
8
+/- 001
8
renal
6
autoregulation
6
blood
5

Similar Publications

Background/aims: Human mesenchymal stromal cells (hMSC) are multipotent adult cells commonly used in regenerative medicine as advanced therapy medicinal products. The expansion of these cells in xeno-free supplements is highly encouraged by regulatory agencies due to safety concerns. However, the number of supplements with robust performance and consistency for hMSC expansion are limited.

View Article and Find Full Text PDF

Jejunal Artery Aneurysm Exclusion With Immediate Vascular Reconstruction: A Case Report.

Port J Card Thorac Vasc Surg

January 2025

Angiology and Vascular Surgery, Unidade Local de Saúde de São João; Surgery and Physiology, Faculdade de Medicina da Universidade do Porto, Portugal.

A 44 year-old previously healthy woman presented a persistent epigastric pain. Computed tomography revealed a saccular aneurysm with a diameter of 25x20 mm in the first jejunal artery and also a stenosis in the celiac trunk associated with median arcuate ligament syndrome, turning the hepatic perfusion dependent of the gastroduodenal artery flow. Through a midline laparotomy, celiac axis was exposed, and median arcuate ligament released for median arcuate ligament syndrome treatment.

View Article and Find Full Text PDF

Advances in Diagnosis, Treatment and Prognostic in Aortoiliac Occlusive Disease - A Narrative Review.

Port J Card Thorac Vasc Surg

January 2025

Department of Biomedicine - Unit of Anatomy, Faculty of Medicine, University of Porto; RISE@Health, Porto, Portugal.

Background: Aortoiliac disease (AID) is a variant of peripheral artery disease involving the infrarenal aorta and iliac arteries. Similar to other arterial diseases, aortoiliac disease obstructs blood flow through narrowed lumens or by embolization of plaques. AID, when symptomatic, may present with a triad of claudication, impotence, and absence of femoral pulses, a triad also referred as Leriche Syndrome (LS).

View Article and Find Full Text PDF

Introduction: Hemoperfusion (HP), a blood filtration method targeting the removal of toxins and inflammatory elements, was investigated in this study. The objective was to present the observations in four individuals with confirmed COVID-19 who underwent several rounds of HP utilizing the HA330 cartridge at a hospital in Indonesia.

Case Studies: We report four cases of COVID-19 patients who underwent HP.

View Article and Find Full Text PDF

Tissue nanotransfection-based endothelial PLCγ2-targeted epigenetic gene editing in vivo rescues perfusion and diabetic ischemic wound healing.

Mol Ther

January 2025

Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, United States; Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, United States. Electronic address:

Diabetic wounds are complicated by underlying peripheral vasculopathy. Reliance on vascular endothelial growth factor (VEGF) therapy to improve perfusion makes logical sense, yet clinical study outcomes on rescuing diabetic wound vascularization have yielded disappointing results. Our previous work has identified that low endothelial phospholipase Cγ2 (PLCγ2) expression hinders the therapeutic effect of VEGF on the diabetic ischemic limb.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!