The kinase splitting membranal proteinase (KSMP), was recently shown to be identical with the beta-subunit of meprin. Meprin is a metalloendoproteinase located in brush border membranes and composed of the two types of subunits, alpha and beta. Despite their high sequence homology and similar domain organization, meprin subunits are differently processed during maturation; meprin alpha is retained in the endoplasmic reticulum (ER), and undergoes a proteolytic removal of the transmembrane and cytoplasmic domains, prior to its export from this organelle. In contrast, meprin beta retains these domains even after reaching its final destination in the plasma membrane. Using truncated mutants of rat meprin beta expressed in Cos-7 and human embryonic kidney (HEK) 293 cells, we show here that the cytoplasmic tail is indispensable for its exit from the ER. A meprin beta mutant lacking the last 25 amino acids is shown to be transport-incompetent, although it does not contain any of the known ER retention signals. Systematic analysis of the rate of the ER to Golgi transport using a series of mutants with Ala or Pro substitutions in the tail, suggests that while no specific amino acid residue by itself is imperative for normal intracellular trafficking of meprin beta, the insertion of a bend at a distinct position in the tail (specifically by a Y685P mutation) suffices to retain this protein in the ER. We propose that the very length of the cytoplasmic tail, as well as its secondary structure are essential for the ER to Golgi transport of meprin beta, possibly by allowing an interaction with a cargo receptor.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.273.44.29043 | DOI Listing |
Polymers (Basel)
June 2024
Biosciences Institute, Newcastle University Biosciences Institute, Catherine Cookson Building, Framlington Place, Newcastle-upon-Tyne NE2 4HH, UK.
MUC2 mucin, the primary gel-forming component of intestinal mucus, is well researched and a model of polymerisation and post-secretory organisation has been published previously. Recently, several significant developments have been made which either introduce new ideas or challenge previous theories. New ideas include an overhaul of the MUC2 C-terminal globular structure which is proposed to harbour several previously unobserved domains, and include a site for an extra intermolecular disulphide bridge dimer between the cysteine 4379 of adjacent MUC2 C-termini.
View Article and Find Full Text PDFCell Mol Life Sci
March 2024
Biochemical Institute, Unit for Degradomics of the Protease Web, University of Kiel, Otto-Hahn-Platz 9, 24118, Kiel, Germany.
Neurotoxic amyloid-β (Aβ) peptides cause neurodegeneration in Alzheimer's disease (AD) patients' brains. They are released upon proteolytic processing of the amyloid precursor protein (APP) extracellularly at the β-secretase site and intramembranously at the γ-secretase site. Several AD mouse models were developed to conduct respective research in vivo.
View Article and Find Full Text PDFJ Biomol Struct Dyn
January 2024
Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India.
Human meprin β is a Zn-containing multidomain metalloprotease enzyme that belongs to the astacin family of the metzincin endopeptidase superfamily. Meprin β, with its diverse tissue expression pattern and wide substrate specificity, plays a significant role in various biological processes, including regulation of IL-6R pathways, lung fibrosis, collagen deposition, cellular migration, neurotoxic amyloid β levels, and inflammation. Again, meprin β is involved in Alzheimer's disease, hyperkeratosis, glomerulonephritis, diabetic kidney injury, inflammatory bowel disease, and cancer.
View Article and Find Full Text PDFSAR QSAR Environ Res
November 2023
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Wad Madani, Sudan.
Meprins, zinc-dependent metalloproteinases belonging to the metzincin family, have been associated with various inflammatory diseases due to their abnormal expression and activity. In this study, we utilized pharmacophore modelling to identify crucial features for discovering potential dual inhibitors targeting meprins α and β. We screened four pharmacophoric features against a library of 270,540 natural compounds from the Zinc database, resulting in 84,092 matching compounds.
View Article and Find Full Text PDFJ Clin Transl Hepatol
October 2023
Department of Gastroenterology, Huadong Hospital, Fudan University, Shanghai, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!