By means of conformational analysis, the spatial structure and conformational potential of the H-Tyr-Ala-Gly-Ala-Val-Val-Asn-Asp-Leu-OH molecule, which corresponds to sequence 329-337 of the subunit 2 C-terminal region of the herpes virus ribonucleotide reductase, were studied. It was shown that its spatial organization can be described by a set of 17 low-energy conformations of the backbone. The "reverse conformational problem" for this molecule was solved to enable the prediction of a series of synthetic analogues matching the set of low-energy, potentially physiologically active conformations.
Download full-text PDF |
Source |
---|
Sci Rep
January 2025
Department of Emergency Medicine, Hengyang Medical School, The Affiliated Changsha Central Hospital, University of South China, Changsha, Hunan, China.
Our study aims to investigate the role of pyrimidine metabolism in prostate cancer and its associations with the immune microenvironment, drug sensitivity, and tumor mutation burden. Through transcriptomic and single-cell RNA sequencing analyses, we explored metabolic pathway enrichment, immune infiltration patterns, and differential gene expression in prostate cancer samples. The results showed that pyrimidine metabolism-related genes were significantly upregulated in the P2 subgroup compared to the P1 subgroup, with enhanced metabolic activity observed in basal and luminal epithelial cells.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China.
Background: Chinese cabbage is a cross-pollinated crop with remarkable heterosis, and male-sterile line is an important mean to produce its hybrids. In this study, a male-sterile mutant msm7 was isolated from a Chinese cabbage DH line 'FT' by using EMS-mutagenesis.
Results: Compared with the wild-type 'FT', the anthers of mutant msm7 were completely aborted, accompanied by the defects in leaf and petal development.
Drug Res (Stuttg)
January 2025
Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
WEE1 is a key tyrosine kinase involved in the cell cycle regulation with potent anticancer effects in various cancer types including colorectal cancer. Recent studies have focused on the potential of combinational inhibition of Ataxia Telangiectasia and Rad-3-related protein (ATR) and WEE1 in increasing apoptosis in cancer cells. Therefore, this study investigates the effects of inhibiting WEE1, by employing AZD1775, on colorectal cancer cells' susceptibility to VE-822-induced DNA damage and apoptosis.
View Article and Find Full Text PDFBMC Genomics
January 2025
State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
Infectious spleen and kidney necrosis virus (ISKNV) is a highly virulent and rapidly transmissible fish virus that poses threats to the aquaculture of a wide variety of freshwater and marine fish. N6-methyladenosine (mA), recognized as a common epigenetic modification of RNA, plays an important regulatory role during viral infection. However, the impact of mA RNA methylation on the pathogenicity of ISKNV remains unexplored.
View Article and Find Full Text PDFGenes (Basel)
December 2024
State Key Lab of Pharmaceutical Biotechnology (SKLPB), College of Life Sciences in Nanjing University (Xianlin Campus), Nanjing University, Nanjing 210046, China.
Background: Hepatocellular carcinoma (HCC) is a type of malignant tumor with high morbidity and mortality. Untimely treatment and high recurrence are currently the major challenges for HCC. The identification of potential targets of HCC progression is crucial for the development of new therapeutic strategies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!