The kinetics of formation and dissociation of the horse metmyoglobin/fluoride complex has been investigated between pH 3.4 and 11. The ionic strength dependence of the reaction has been measured at integral pH values between pH 5 and 10. Hydrofluoric acid, HF, binds to metmyoglobin with a rate constant of (4.7 +/- 0. 7) x 10(4) M-1 s-1. An apparent ionization in metmyoglobin with a pKa of 4.4 +/- 0.5 influences the rate of HF binding and is attributed to the distal histidine, His-64. Protonation of His-64 increases the HF binding rate by a factor of 2.6. The fluoride anion, F-, binds to metmyoglobin with a rate constant of (5.6 +/- 1.4) x 10(-2) M-1 s-1, about 10(6) times slower than HF. Binding of either HF or F- to hydroxymetmyoglobin cannot be detected. Protonation of the distal histidine facilitates HF dissociation from the metmyoglobin/fluoride complex. HF dissociates with a rate constant of 1.9 +/- 0.3 s-1. The fluoride anion dissociates 2000 times more slowly, with a rate constant of (8.7 +/- 1.6) x 10(-4) s-1. The apparent pKa for His-64 ionization in the fluorometmyoglobin complex is 5.7 +/- 0.1. The association and dissociation rate constants are relatively independent of ionic strength with secondary kinetic salt effects sufficient to account for the ionic strength variation of both, consistent with the idea that association and dissociation of neutral HF dominate the kinetics of fluoride binding to metmyoglobin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1006/abbi.1998.0872 | DOI Listing |
Environ Sci Pollut Res Int
January 2025
Department of Environmental Health, Health Promotion Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
An investigation into the degradation of ciprofloxacin (CIP) under visible light was carried out using an efficient photocatalyst, i.e., CoFeO@3D-TiO@GA, synthesized by doping CoFeO@three-dimensional-TiO into a hierarchical porous graphene aerogel.
View Article and Find Full Text PDFJ Mol Model
January 2025
School of Chemistry & Chemical Engineering, Linyi University, Linyi, 276000, China.
Context: In this work, a comparative study on the catalytic conversion of 5-hydroxymethyl furfural (HMF) to 2,5-bis(hydroxymethyl)furan (BHMF) on precious Pd(111) and nonprecious Cu(111) was systematically performed. On the basis of the calculated activation energy (E) and reaction energy (E), the optimal energy path for the hydrogenation of HMF (F-CHO) into BHMF (F-CHOH) on Pd(111) is as follows: F-CHO + 2H → F-CHOH + H → F-CHOH; the minimum reaction path on Cu(111) is F-CHO + 2H → F-CHO + H → F-CHOH. On Cu(111), the formation of F-CHOH from F-CHO hydrogenation is the rate-determining step because it has the highest reaction energy barrier and the smallest rate constant.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT La Plata-CONICET, Casilla de Correo 16, Sucursal 4, (1900) La Plata, Argentina.
The dependence of the rate constant of the recombination reaction of CCl and NO radicals on temperature and pressure was studied. Quantum-chemical calculations were employed to characterize relevant aspects of the potential energy surface for this process. The limiting rate constants between 300 and 2000 K were analyzed using the unimolecular reactions theory.
View Article and Find Full Text PDFIran J Public Health
December 2024
Centre for Clinical Pharmacology, Military Medical Academy, Belgrade, Serbia.
Background: According to World Health Organisation data, on the top ten causes of death in the world in 2019, ischemic heart diseases ranked first, followed by stroke and chronic respiratory diseases. This study aimed to make cross-section of the current mortality rates of indicators of circulatory diseases, ischemic heart diseases and cerebrovascular diseases, access the trends of indicators in Serbia more than two decades and to find the correlation of these observed indicators between males and females.
Methods: Medical indicators were taken from the publicly available Health for all databases that deals with long-term evaluation and monitoring of indicators obtained from national authorities.
RSC Adv
January 2025
Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology Patiala-147004 Punjab India
In this study, a detailed DFT investigation was conducted to systematically analyze the scavenging activity of six hydrazone compounds (1-6) against HOO˙ and CHOO˙ radicals. Three mechanistic pathways were explored: hydrogen atom transfer (HAT), single electron transfer followed by proton transfer (SETPT), and sequential proton loss electron transfer (SPLET). These mechanisms were evaluated based on thermodynamic parameters, including bond dissociation enthalpy (BDE), ionization potential (IP), proton dissociation enthalpy (PDE), proton affinity (PA), and electron transfer enthalpy (ETE) in the gas phase, water, and pentyl ethanoate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!