Experiments on male albino rats demonstrated significant changes in the content of oxidized and reduced glutathione in the tissues of the liver, pancreas, stomach, duodenum, and small intestine in acetate ulcer of the duodenum. Experimental therapy with quamatel and particularly with omez led to activation of the glutathione system in the tissues under and in this way increased their resistance to the ulcerogenic effect.

Download full-text PDF

Source

Publication Analysis

Top Keywords

glutathione system
8
comparative evaluation
4
evaluation action
4
action kvamatel
4
kvamatel omez
4
omez glutathione
4
system sections
4
sections digestive
4
digestive system
4
system experimental
4

Similar Publications

Redox biomarker levels in patients with myelodysplastic syndrome.

Biomed Rep

March 2025

Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, Larissa 41500, Greece.

Myelodysplastic syndrome (MDS) is a heterogeneous clonal disorder characterized by insufficient hematopoiesis, peripheral blood cytopenia and an increased risk for malignant transformation to acute myeloid leukemia. Several factors, such as age, sex and lifestyle, promote the development of MDS syndrome. Oxidative stress, along with its detrimental effects, cause hematological disorders; however, its role in the pathogenesis of MDS is unknown.

View Article and Find Full Text PDF

DNA-based nanomaterials have attracted increasing attention over the past decades due to their incomparable programmability and functionality. In particular, dendritic DNA nanostructures are ideal for constructing drug carriers due to their highly branched structure. In this study, an intelligent drug delivery system was constructed based on DNA dendrimers, in which the DNA duplexes were utilized for simultaneously loading both hydrophilic and hydrophobic small molecule drugs.

View Article and Find Full Text PDF

A mitochondria-targeted iridium(III) complex-based sensor for endogenous GSH detection in living cells.

Analyst

January 2025

Jiangxi Provincial Key Laboratory of Organic Functional Molecules; Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China.

Glutathione (GSH) plays an important role in maintaining redox homeostasis in biological systems. Development of reliable glutathione sensors is of great significance to better understand the role of biomolecules in living cells and organisms. Based on the advantages of the photophysical properties of iridium complexes, we proposed a "turn-on" phosphorescent sensor.

View Article and Find Full Text PDF

Deep eutectic solvents (DESs) have attracted significant attention in recent years due to its environment friendly characteristics and its participation in the multi-heteroatom doping of carbon quantum dots (CQDs). In this work, we present a simple, fast, and environment-friendly microwave synthesis approach for the synthesis of DES-assisted nitrogen and chloride co-doped CQDs (N,Cl-CQDs) using a choline chloride-urea based DES. A biomass-based precursor, i.

View Article and Find Full Text PDF

An Oxidative Stress Nanoamplifier to Enhance the Efficacy of Cisplatin in Head and Neck Cancer.

Angew Chem Int Ed Engl

January 2025

NCNST: National Center for Nanoscience and Technology, CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, No 11, Zhongguancun Beiyitiao, Haidian, 100190, Beijing, CHINA.

Cisplatin (CP) is a first-line platinum-based drug used for the treatment of head and neck cancer. However, tumor cells can diminish the therapeutic effects of CP through the detoxification system mediated by glutathione (GSH) and the nucleotide excision repair (NER) pathway. Herein, we present a light-activable and pH-responsive oxidative stress nanoamplifier (FPLC@IR OSNA), comprising an amphiphilic compound (FPLC) with Fmoc-lysine acting as a connector between a nitroimidazole derivative and a pH-responsive cinnamaldehyde (CA) derivative, loaded with photosensitizer IR780.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!