Type B strains of Rhizobium tropici induce severe foliar chlorosis when applied at planting to seeds of symbiotic host and non-host dicotyledonous plants. A Tn5-induced mutant, designated CT4812, or R. tropici strain CIAT899 that was unable to induce chlorosis was isolated. Cloning and sequencing of the DNA flanking the transposon in CT4812 revealed that the Tn5 insertion is located in a gene similar to glnD, which encodes uridylyltransferase/uridylyl-removing enzyme in enteric bacteria. Two marker-exchange mutants with insertions in glnD also failed to induce chlorosis in bean (Phaseolus vulgaris) plants. The 5'-most insertion in glnD (in mutant strain ME330) abolished the ability of R. tropici to utilize nitrate as a sole carbon source, whereas a mutation in glnD further downstream (in mutant strain ME245) did not have an obvious effect on nitrate utilization. A gene similar to the Salmonella typhimurium virulence gene mviN overlaps the 3' end of the R. tropici glnD homologue. A mutation in mviN had no effect on the ability of CIAT899 to induce chlorosis in bean plants. Therefore the glnD homologue, but not mviN, appears to be required for induction of chlorosis in plants by R. tropici strain CIAT899. A high nitrogen: carbon ratio in the rhizosphere of bean plants also prevented R. tropici from inducing chlorosis in bean plants. Mutations in either the glnD homologue or mviN had no significant effect on root nodule formation or acetylene reduction activity. A mutation in mviN eliminated motility in R. tropici. The sequence data, the inability of the glnD mutant to utilize nitrate, and the role of the R. tropici glnD gene in chlorosis induction in plants, a process that is nitrogen regulated, suggest that glnD plays a role in nitrogen sensing in R. tropici as its homologues do in other organisms.

Download full-text PDF

Source
http://dx.doi.org/10.1099/00221287-144-9-2607DOI Listing

Publication Analysis

Top Keywords

induce chlorosis
16
tropici strain
12
strain ciat899
12
chlorosis bean
12
glnd homologue
12
bean plants
12
tropici
10
glnd
10
rhizobium tropici
8
ciat899 induce
8

Similar Publications

Exogenous 2,4-Epibrassinolide Alleviates Alkaline Stress in Cucumber by Modulating Photosynthetic Performance.

Plants (Basel)

December 2024

Stage Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China.

Brassinosteroids (BRs) are recognized for their ability to enhance plant salt tolerance. While considerable research has focused on their effects under neutral salt conditions, the mechanisms through which BRs regulate photosynthesis under alkaline salt stress are less well understood. This study investigates these mechanisms, examining plant growth, photosynthetic electron transport, gas exchange parameters, Calvin cycle dynamics, and the expression of key antioxidant and Calvin cycle genes under alkaline stress conditions induced by NaHCO.

View Article and Find Full Text PDF

Since the ban of neonicotinoid insecticides in the European Union, sugar beet production is threatened by outbreaks of virus yellows (VY) disease, caused by several aphid-transmitted viruses, including the polerovirus beet mild yellowing virus (BMYV). As the symptoms induced may vary depending on multiple infections and other stresses, there is an urgent need for fast screening tests to evaluate resistance/tolerance traits in sugar beet accessions. To address this issue, we exploited the virus-induced gene silencing (VIGS) system, by introducing a fragment of a gene involved in chlorophyll synthesis in the BMYV genome.

View Article and Find Full Text PDF

Iron Deficiency in Tomatoes Reversed by Strains: A Synergistic Role of Siderophores and Plant Gene Activation.

Plants (Basel)

December 2024

Plant Physiology, Pharmaceutical and Health Sciences Department, Faculty of Pharmacy, San Pablo-CEU Universities, 28668 Boadilla del Monte, Spain.

An alkaline pH in soils reduces Fe availability, limiting Fe uptake, compromising plant growth, and showing chlorosis due to a decrease in chlorophyll content. To achieve proper Fe homeostasis, dicotyledonous plants activate a battery of strategies involving not only Fe absorption mechanisms, but also releasing phyto-siderophores and recruiting siderophore-producing bacterial strains. A screening for siderophore-producing bacterial isolates from the rhizosphere of was carried out, resulting in two strains, Z8.

View Article and Find Full Text PDF

D1-104/3 and C31-106/3 differentially modulate the antioxidative response of duckweed ( L.) to salt stress.

Front Microbiol

December 2024

Department of Plant Physiology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia.

Article Synopsis
  • Duckweed is a valuable model for studying plant responses to stress, specifically focusing on how bacterial strains D1-104/3 and C31-106/3 influence growth and stress responses under salt stress (10 and 100 mM NaCl).
  • The experiment measured various physiological parameters after 14 days, revealing that both bacterial strains colonized duckweeds and affected growth differently, with C31-106/3 showing a longer doubling time but reducing chlorosis.
  • Results indicated that both bacterial strains enhanced antioxidant capacity and reduced oxidative stress, with significant differences in their impacts on proline, chlorophyll, and enzyme activities, particularly at higher salt concentrations.
View Article and Find Full Text PDF

L-DOPA promotes cadmium tolerance and modulates iron deficiency genes in Arabidopsis thaliana.

Physiol Plant

December 2024

Department of Agricultural Chemistry, College of Agriculture and Bioresources, National Taiwan University, Taipei, Taiwan.

Cadmium (Cd) is a toxic element and a widespread health hazard. Preventing its entry into crops is an outstanding issue. 3,4-Dihydroxy-L-phenylalanine (L-DOPA) is a non-proteinogenic amino acid that is secreted by a few legume plants and affects neighboring plants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!