Membrane deformations occur frequently in cell functioning. From the physical point of view, the understanding of such shape changes requires the introduction of mechanical parameters like bending elasticity. In this article it is shown how this physical property can be obtained from the analysis of small or large shape transformations from giant vesicles. Then it is demonstrated that the bending modulus is strongly dependent on the membrane composition and environmental conditions. This is the case for one-component bilayers (dilauroylphosphatidylcholine (DLPC), dimyristoylphosphatidylcholine (DMPC), dipalmitoylphosphatidylcholine and stearoyloleoyl-phosphatidylcholine (SOPC) and for two-component lipid mixtures (DMPC/cholesterol, DLPC/dilauroylphosphatidic acid). Further it is shown that the bending elasticity of natural lipid extracts (egg phosphatidylcholine, digalactosyl diglyceride and red blood cell lipid extracts) is generally smaller than that of comparable synthetic model membranes. The role of transmembrane proteins is examined by measuring the bending elasticity of SOPC/gramicidin mixtures. Finally, larger scale shape transformations of giant vesicles under an alternative electric field are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0300-9084(00)80008-5DOI Listing

Publication Analysis

Top Keywords

shape transformations
12
transformations giant
12
giant vesicles
12
bending elasticity
12
model membranes
8
lipid extracts
8
mechanical properties
4
properties model
4
membranes studied
4
shape
4

Similar Publications

Magnetic nanoparticles of Nd2Fe14B prepared by ethanol-assisted wet ball milling technique.

Sci Rep

January 2025

Environmental and Occupational Hazards Control Research Center, Research Institute for Health Sciences and Environment, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

The magnetic material Nd2Fe14B is one of the strongest magnetic materials found in nature. The demand for the production of these nanoparticles is significantly high due to their exceptional properties. The aim of the present study is to synthesize magnetic nanoparticles of Nd2Fe14B using ethanol in the wet ball milling technique (WBMT).

View Article and Find Full Text PDF

Hydroxyapatite (HA) is an important constituent of natural bone. The properties of HA can be enhanced with the help of various ionic substitutions in the crystal lattice of HA. Iron (Fe) is a vital element present in bones and teeth.

View Article and Find Full Text PDF

Patient-centred care and technical challenges during polytrauma imaging - Experiences from radiography students.

Radiography (Lond)

January 2025

Department of Radiography, School of Allied Health Sciences, Faculty of Health Sciences and Veterinary Medicine, University of Namibia, P.O Box 13301, Windhoek, Namibia. Electronic address:

Introduction: Patient-centred care (PCC) is essential in radiography for polytrauma patients emphasising empathy, clear communication, and patient well-being. Polytrauma patients require tailored imaging approaches, often involving multiple modalities. Managing and handling these patients during imaging are key components of radiography training to develop the necessary competencies.

View Article and Find Full Text PDF

Exploring Nile Red Staining as an Analytical Tool for Surface-Oxidized Microplastics.

Environ Res

January 2025

School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.; Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.; Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Global Center for Medical Engineering and Informatics, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.. Electronic address:

Microplastics (MPs), defined as plastic particles smaller than 5 mm, have garnered considerable attention owing to their potential biological impact on human health. These particles exhibit a range of physicochemical properties, including size, shape, and surface oxidation. Nile Red is a prominent tool for detecting microplastics, enabling staining for dynamic analyses within biological systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!