Alternative splicing has been shown to occur at the metabotropic glutamate receptor 1 (mGluR1) gene. Three main isoforms that differ in their carboxy-termini have been described so far and named mGluR1alpha, mGluR1beta and mGluR1c. These variants when expressed in recombinant systems all activate phospholipase C, although the [Ca2+] signals generated have different kinetics. Tissue distribution studies of specific mGluR1 splice variants are limited to the mGluR1alpha isoform. In the present work, we examined the localization of mGluR1beta in the adult rat and mouse forebrain by using a specific antipeptide antibody. Furthermore, the mGluR1beta immunostaining was compared with that obtained with antibodies specific for mGluR1alpha or with a pan-mGluR1 antibody which recognizes all isoforms. mGluR1beta-like immunoreactivity (LI) was found confined to the neuropil and neuronal perikarya and appeared discretely distributed in the rodent forebrain. Differential cellular distribution between mGluR1alpha and mGluR1beta was observed. In the hippocampus, mGluR1alpha-LI was restricted to non-principal neurons in all fields, whereas mGluR1beta-LI was strongest in principal cells of the CA3 field and dentate granule cells but absent in CA1. We have also shown that the vast majority of neurons in the striatum express mGluR1. The predominant form appeared to be mGluR1beta, with a distribution pattern reflecting the patch-matrix organization of the striatum. The specificity of the immunoreactivity described for mGluR1 splice variants was confirmed in mGluR1-deficient mice. The observation of a different cellular and regional distribution of mGluR1 splice variants, in particular in the hippocampus, suggests that they may mediate different roles in synaptic transmission.

Download full-text PDF

Source

Publication Analysis

Top Keywords

mglur1 splice
16
splice variants
16
localization mglur1beta
8
metabotropic glutamate
8
glutamate receptor
8
rodent forebrain
8
distribution mglur1
8
mglur1alpha mglur1beta
8
mglur1beta
6
mglur1
6

Similar Publications

Neuronal plasticity underlying cerebellar learning behavior is strongly associated with type 1 metabotropic glutamate receptor (mGluR1) signaling. Activation of mGluR1 leads to activation of the G pathway, which is involved in inducing synaptic plasticity at the parallel fiber-Purkinje cell synapse (PF-PC) in form of long-term depression (LTD). To optogenetically modulate mGluR1 signaling we fused mouse melanopsin (OPN4) that activates the G pathway to the C-termini of mGluR1 splice variants (OPN4-mGluR1a and OPN4-mGluR1b).

View Article and Find Full Text PDF

mGluR1α expression in the hippocampus, subiculum, entorhinal cortex and superior temporal gyrus in Alzheimer's disease.

IBRO Neurosci Rep

December 2022

Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.

Glutamate is the main excitatory neurotransmitter in the central nervous system, responsible for a plethora of cellular processes including memory formation and higher cerebral function and has been implicated in various neurological disease states. Alzheimer's disease (AD) is the leading neurodegenerative disorder worldwide and is characterized by significant cell loss and glutamatergic dysfunction. While there has been a focus on ionotropic glutamatergic receptors few studies have attempted to elucidate the pathological changes of metabotropic glutamate receptors (mGluRs) in AD.

View Article and Find Full Text PDF

Glutamate is the major excitatory neurotransmitter in the CNS binding to a variety of glutamate receptors. Metabotropic glutamate receptors (mGluR1 to mGluR8) can act excitatory or inhibitory, depending on associated signal cascades. Expression and localization of inhibitory acting mGluRs at inner hair cells (IHCs) in the cochlea are largely unknown.

View Article and Find Full Text PDF

Metabotropic glutamate receptors (mGluRs) couple to G-proteins to modulate slow synaptic transmission via intracellular second messengers. The first cloned mGluR, mGluR1, regulates motor coordination, synaptic plasticity and synapse elimination. mGluR1 undergoes alternative splicing giving rise to four translated variants that differ in their intracellular C-terminal domains.

View Article and Find Full Text PDF

In astrocytes, the intracellular calcium (Ca2+) signaling mediated by activation of metabotropic glutamate receptor 5 (mGlu5) is crucially involved in the modulation of many aspects of brain physiology, including gliotransmission. Here, we find that the mGlu5-mediated Ca2+ signaling leading to release of glutamate is governed by mGlu5 interaction with Homer1 scaffolding proteins. We show that the long splice variants Homer1b/c are expressed in astrocytic processes, where they cluster with mGlu5 at sites displaying intense local Ca2+ activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!