Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A ligamento-muscular protective reflex in the lumbar spine was demonstrated in a feline model. Stimulating electrodes were applied to the supraspinous ligament between several lumbar vertebra (L1 to L6) while recording myoelectric discharge from the paraspinal muscles at the L3, L4 and L5, bilaterally. Electromyographic (EMG) activity was present in the paraspinal muscles bilaterally, upon stimulation of the supraspinous ligament, in six preparations. The EMG discharge was strongest in the muscles one level below that of the stimulated ligament, whereas weaker EMG signals were recorded from as far as two levels above and below. The mean time delay between the application of the stimulus to the ligament to the resulting EMG ranged from 2.52 to 2.77 ms at all levels. Stimulation of the supraspinous ligament in the L6 segment resulted in a weak reflex response, and stimulation in the L7 segment did not produce any EMG activity. It was concluded that mechanoreceptors in the supraspinous ligament at the L1/6 levels may initiate sensory signals upon strain of the ligament, during flexion. This, in turn, causes contraction of the paraspinal muscles, bilaterally, to extend the spine and prevent possible damage to the ligament while maintaining stability. The results may add to the understanding of low back pain, and to the formulation of surgical procedures which could spare the neural supply of the ligament, allowing advanced physiotherapeutic modalities to be implemented for post-surgical rehabilitation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s1050-6411(97)00012-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!