A stationary excitation focus produced in rabbit cortex by rhythmical electrodermal paw stimulation was revealed by presentation of testing sound stimuli, which were earlier indifferent for an animal. The multiunit activity in the sensorimotor cortex was recorded. The neuronal pairs were detected with correlated discharges. Analysis of discharges in such pairs revealed the dominant incidence of conjugated impulses with the interval equal or close to 2 s, if the focus had been created by stimulation with the rhythmic interval 2 s. The dominant interval between discharges in a conjugated pair of neurons was equal of close to 3 s, if the rhythmic stimuli positions had been spaced 3 s. It was shown that the rhythmical nature of the dominant focus was maintained at the level of neuronal interactions, i.e., was of a systemic character. The acquired rhythm in conjugated cell activity was observed not only during summation in the moment of excitation transmission to the effector (i.e., when the dominant realized itself in the motor reaction), but within the periods between the testing stimuli.
Download full-text PDF |
Source |
---|
Cell Rep Methods
January 2025
Department of Neurosurgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310029, China; Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou 310029, China; National Key Laboratory of Brain and Computer Intelligence, Zhejiang University, Hangzhou 310058, China; Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China; MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310012, China. Electronic address:
To restore vision in the blind, advances in visual cortical prosthetics (VCPs) have offered high-channel-count electrical interfaces. Here, we design a 100-fiber optical bundle interface apposed to known feature-specific (color, shape, motion, and depth) functional columns that populate the visual cortex in humans, primates, and cats. Based on a non-viral optical stimulation method (INS, infrared neural stimulation; 1,875 nm), it can deliver dynamic patterns of stimulation, is non-penetrating and non-damaging to tissue, and is movable and removable.
View Article and Find Full Text PDFSurg Radiol Anat
January 2025
Anatomy Department, University of Western Brittany (UBO), Brest, France.
Purpose: The aim was to establish a functional MRI protocol for analyzing human stereoscopic vision in clinical practice. The feasibility was established in a cohort of 9 healthy subjects to determine the functional cortical areas responsible for virtually relief vision.
Methods: Nine healthy right-handed subjects underwent orthoptic examination and functional MRI.
Brain Commun
May 2024
Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
Cortical thickness analyses have provided valuable insights into changes in cortical brain structure after stroke and their association with recovery. Across studies though, relationships between cortical structure and function show inconsistent results. Recent developments in diffusion-weighted imaging of the cortex have paved the way to uncover hidden aspects of stroke-related alterations in cortical microstructure, going beyond cortical thickness as a surrogate for cortical macrostructure.
View Article and Find Full Text PDFFront Behav Neurosci
January 2025
School of Education Science, Shaoguan University, Shaoguan, China.
Interpersonal interaction is essential to romantic couples. Understanding how gender impacts an individual's brain activities during intimate interaction is crucial. The present study examined gender differences in oxyhemoglobin (oxy-Hb) changes during real-time drawing interactions between members of romantic couples using non-invasive functional near-infrared spectroscopy (fNIRS).
View Article and Find Full Text PDFSci Rep
January 2025
Department of Neurosurgery of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China.
Horizontal connections in anterior inferior temporal cortex (ITC) are thought to play an important role in object recognition by integrating information across spatially separated functional columns, but their functional organization remains unclear. Using a combination of optical imaging, electrophysiological recording, and anatomical tracing, we investigated the relationship between stimulus-response maps and patterns of horizontal axon terminals in the macaque ITC. In contrast to the "like-to-like" connectivity observed in the early visual cortex, we found that horizontal axons in ITC do not preferentially connect sites with similar object selectivity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!