Placental uptake and transport of three nonmetabolizable amino acids with different reactivities for transport systems were studied in sheep under normal physiologic conditions. Methylaminoisobutyric acid (MeAIB), which has specific affinity for the sodium-dependent A system transporters, demonstrated placental concentrative uptake from the uterine and the umbilical circulations, but virtually no transport from mother to fetus. By contrast, aminoisobutyric acid (AIB) and aminocyclopentane-1-carboxylic acid (ACP), which have affinity for both sodium-dependent and sodium-independent transporters, demonstrated both concentrative uptake and transport from mother to fetus. ACP transport rate to the fetus was approximately twice the AIB transport rate. It is concluded that a neutral amino acid which interacts almost exclusively with the weakly reversible system A transporters may be transported rapidly into the placenta and may attain high concentrations within this organ but cannot escape from placenta to fetus down its own concentration gradient because the exit route is controlled by reversible amino acid transporters at the fetal surface of the placenta. Conversely, high affinity for reversible Na-independent transporters may be a necessary condition for the rapid transport of an amino acid from placenta to fetus.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0143-4004(98)91047-5DOI Listing

Publication Analysis

Top Keywords

uptake transport
12
amino acid
12
nonmetabolizable amino
8
amino acids
8
transport
8
affinity sodium-dependent
8
system transporters
8
transporters demonstrated
8
concentrative uptake
8
transport mother
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!