Early and ubiquitous detection of GABA in the rat spinal cord before the occurrence of synaptogenesis has led to the concept of a neurotrophic role of GABA, in addition to a promoting effect on neurite extension and neurodevelopment. The aim of this study was to further establish, in vivo, evidence for a link between the maturation of spinal cord innervation and the regulation of several isoforms of the synthetic enzymes of GABA, the glutamic acid decarboxylases GAD65, GAD67, and EP10, the embryonic truncated form of GAD67. Neonatal capsaicin treatment was used to induce a specific loss of afferent fibers (unmyelinated C fibers, thin myelinated fibers A delta) to the dorsal horn. The regulation of various GAD mRNAs was investigated using sensitive techniques such as RT-PCR and in situ hybridization. The sensitivity of the methods was further enhanced by the use of a gaseous detector (beta-imager) to quantitate the mRNAs species. After neonatal capsaicin treatment, higher levels of GAD67 mRNA were detected transiently during the postnatal development of the rat spinal cord. A maximum two-fold increase of GAD67 mRNA was found on the day following the capsaicin injection and reached control values within 3 weeks. In contrast, GAD65 mRNA levels remained low and were unaffected by the treatment, and EP10 was not detected. In addition, we have found a similar upregulation, with the same time course, of the cytoskeletal protein beta-actin. The capsaicin-induction of mRNA synthesis was, however, two-fold greater for beta-actin than for GAD67. Moreover, since this upregulation of GAD67 mRNA coincides with the sprouting of unaffected afferent fibers and of 5HT axons, one can hypothesize that GAD67 participates in the structural plasticity occurring in reaction to the capsaicin-induced partial deafferentation.
Download full-text PDF |
Source |
---|
Cell Biosci
January 2025
Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
Background: Myelin-laden foamy macrophages accumulate extensively in the lesion epicenter, exhibiting characteristics of autophagolysosomal dysfunction, which leads to prolonged inflammatory responses after spinal cord injury (SCI). Trehalose, known for its neuroprotective properties as an autophagy inducer, has yet to be fully explored for its potential to mitigate foamy macrophage formation and exert therapeutic effects in the context of SCI.
Results: We observed that trehalose significantly enhances macrophage phagocytosis and clearance of myelin in a dose-dependent manner in vitro.
Adv Exp Med Biol
January 2025
Department of Stem Cells & Regenerative Medicine, Centre for Interdisciplinary Research, D Y Patil Education Society (Deemed to be University), Kolhapur, India.
Bone tissue engineering is a promising field that aims to rebuild the bone tissue using biomaterials, cells, and signaling molecules. Materials like natural and synthetic polymers, inorganic materials, and composite materials are used to create scaffolds that mimic the hierarchical microstructure of bone. Stem cells, particularly mesenchymal stem cells (MSCs), play a crucial role in bone tissue engineering by promoting tissue regeneration and modulating the immune response.
View Article and Find Full Text PDFSci Rep
January 2025
Key Laboratory for Stem Cells and Tissue Engineering Ministry of Education, Guangdong Provincial Key Laboratory of Brain Function and Disease, Institute of Spinal Cord Injury, Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
Neuromuscular diseases usually manifest as abnormalities involving motor neurons, neuromuscular junctions, and skeletal muscle (SkM) in postnatal stage. Present in vitro models of neuromuscular interactions require a long time and lack neuroglia involvement. Our study aimed to construct rodent bioengineered spinal cord neural network-skeletal muscle (NN-SkM) assembloids to elucidate the interactions between spinal cord neural stem cells (SC-NSCs) and SkM cells and their biological effects on the development and maturation of postnatal spinal cord motor neural circuits.
View Article and Find Full Text PDFActa Pharmacol Sin
January 2025
Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
Spinal cord injury (SCI) is a serious trauma of the central nervous system (CNS). SCI induces a unique lipid-dense environment that results in the deposition of large amounts of lipid droplets (LDs). The presence of LDs has been shown to contribute to the progression of other diseases.
View Article and Find Full Text PDFJ Neurosci
January 2025
Department of Neuroscience, Brown University, Providence RI, USA.
Voltage-gated potassium conductances [Formula: see text] play a critical role not only in normal neural function, but also in many neurological disorders and related therapeutic interventions. In particular, in an important animal model of epileptic seizures, 4-aminopyridine (4-AP) administration is thought to induce seizures by reducing [Formula: see text] in cortex and other brain areas. Interestingly, 4-AP has also been useful in the treatment of neurological disorders such as multiple sclerosis (MS) and spinal cord injury, where it is thought to improve action potential propagation in axonal fibers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!