We have previously demonstrated that the failure of the mammalian central nervous system (CNS) to regenerate following axonal injury is related to its immunosuppressive nature, which restricts the ability of both recruited blood-borne monocytes and CNS-resident microglia to support a process of repair. In this study we show that transected optic nerve transplanted with macrophages stimulated by spontaneously regenerating nerve tissue, e.g., segments of peripheral nerve (sciatic nerve), exhibit axonal regrowth at least as far as the optic chiasma. Axonal regrowth was confirmed by double retrograde labeling of the injured optic axons, visualized in their cell bodies. Transplanted macrophages exposed to segments of CNS (optic) nerve were significantly less effective in inducing regrowth. Immunocytochemical analysis showed that the induced regrowth was correlated with a wide distribution of macrophages within the transplanted-transected nerves. It was also correlated with an enhanced clearance of myelin, known to be inhibitory for regrowth and poorly eliminated after injury in the CNS. These results suggest that healing of the injured mammalian CNS, like healing of any other injured tissue, requires the partnership of the immune system, which is normally restricted, but that the restriction can be circumvented by transplantation of peripheral nerve-stimulated macrophages.

Download full-text PDF

Source

Publication Analysis

Top Keywords

optic nerve
12
peripheral nerve-stimulated
8
nerve-stimulated macrophages
8
transected optic
8
transplanted macrophages
8
axonal regrowth
8
cns healing
8
healing injured
8
nerve
6
macrophages
5

Similar Publications

Background: Ultrasonographic optic nerve sheath diameter (ONSD) is a satisfactory noninvasive intracranial pressure (ICP) monitoring test. Our aim was to evaluate ONSD as an objective screening tool to predict and diagnose ICP changes early in sepsis-associated encephalopathy (SAE).

Methods: Our prospective observational study was conducted on patients with sepsis, and after intensive care unit (ICU) admission, the time to diagnose SAE was recorded, and patients were divided into a non-SAE group including conscious patients with sepsis and a SAE group including patients with sepsis with acute onset of disturbed conscious level.

View Article and Find Full Text PDF

Purpose: To evaluate optic disc and macular microvasculature changes in children with anisometropic amblyopia before and after treatment.

Methods: In all, 60 children with unilateral anisometropic amblyopia between the ages of 6 and 12 were randomly selected from the ophthalmology clinic of Fuyang People's Hospital, while 60 children with non-amblyopia in the same age range were randomly selected as a normal control group. The right eye was uniformly taken in the control group with at least 6 months of follow-up.

View Article and Find Full Text PDF

Cryptococcus gattii is a saprophytic basidiomycete that grows in the environment and can cause systemic cryptococcosis. Ocular cryptococcosis causes blindness and is commonly associated with central nervous system (CNS) infection. Toll-like receptor 9 (TLR9) can control cryptococcosis and another mycosis.

View Article and Find Full Text PDF

The value of magnetic resonance imaging of the optic nerve for the diagnosis of multiple sclerosis in patients with optic neuritis.

J Neurol

January 2025

Department of Neurology, Clinic of Optic Neuritis and Danish Multiple Sclerosis Center, Rigshospitalet-Glostrup, Valdemar Hansens Vej 13, 2600, Glostrup, Denmark.

Background: Although optic neuritis (ON) is common in multiple sclerosis (MS), lesions of the optic nerve are not included as an anatomical substrate for dissemination in space and time (DIS and DIT).

Objective: To assess the increase in sensitivity of including MRI lesions of the optic nerve for the diagnosis of MS in patients with ON.

Methods: We included patients consecutively referred with first time, monosymptomatic ON, with no known cause of the ON, who underwent orbital MRI including fat suppressed T2 and T1-sequences with and without gadolinium contrast.

View Article and Find Full Text PDF

Anatomy-driven segmentation of parafoveal optical coherence tomography (OCT) measures may improve associations with clinical outcomes in multiple sclerosis.

J Neurol

January 2025

Jacobs Comprehensive MS Treatment and Research Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA.

Background: Previous investigations on optical coherence tomography (OCT) in multiple sclerosis (MS) focused on generalizable macular and peri-papillary regions without considering the anatomic variations of the retinal layer thickness.

Objective: This study aimed to assess the utility of parafoveal retinal layer thickness measured by OCT, underscoring its relationships with clinical outcomes in MS.

Methods: In this cross-sectional study, 214 people with MS (pwMS) and 57 age- and sex-matched healthy controls (HCs) were enrolled.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!