AI Article Synopsis

  • The study examined SB 211475, a metabolite of carvedilol, for its effects on heart damage after blood flow restoration in rabbits.
  • Higher doses of SB 211475 (1.0 and 3.0 mg/kg) significantly reduced heart damage compared to the control group, but not as effectively as carvedilol.
  • Both carvedilol and SB 211475 reduced inflammation levels, but carvedilol provided superior heart protection likely due to its broader action on adrenergic receptors.

Article Abstract

The aim of this study was to investigate the effect of SB 211475, a metabolite of carvedilol with weak alpha1-adrenoceptor antagonism and antioxidant effect, on myocardial reperfusion injury and infarct size in anesthetized rabbits. The rabbits were subjected to 60 min of regional myocardial ischemia and 180 min of reperfusion. SB 211475 was administered either as 0.3, 1.0 or 3.0 mg/kg and compared to vehicle and carvedilol (1 mg/kg) treated animals. The lowest dose of SB 211475 (0.3 mg/kg) did not reduce infarct size compared to vehicle, whereas SB 211475 1.0 or 3.0 mg/kg reduced infarct size significantly compared to vehicle (41.2 +/- 2.2% and 40.5 +/- 2.8% vs. 59.1 +/- 3.9%, p < 0.05). Carvedilol reduced infarct size significantly more than SB 211475 1.0 and 3.0 mg/kg (28.8 +/- 3.9% vs. 41.2 +/- 2.2% and 40.5 +/- 2.7%, p < 0.05). Carvedilol and SB 211475 1.0 and 3.0 mg/kg reduced myeloperoxidase activity to the same extent, indicative of reduced inflammation. Rate-pressure product did not differ between doses of SB 211475. In conclusion, SB 211475 in the two highest doses reduced infarct size by protecting from reperfusion injury, possibly by reduced neutrophil accumulation. The superior cardiac protective effect of carvedilol over SB 211475 are most likely due to its adrenergic pharmacology including non-selective beta- and alpha1-adrenoceptor antagonism.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0014-2999(98)00494-4DOI Listing

Publication Analysis

Top Keywords

infarct size
24
211475 mg/kg
16
reperfusion injury
12
compared vehicle
12
reduced infarct
12
0
10
211475 metabolite
8
metabolite carvedilol
8
alpha1-adrenoceptor antagonism
8
size compared
8

Similar Publications

Effects of Electroacupuncture Per-Conditioning at Huantiao on Motor Function Recovery in Acute Cerebral Ischemia Mice.

Physiol Behav

January 2025

Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China. Electronic address:

Background: Continuous electroacupuncture pre-conditioning (EPRC) and post-conditioning (EPOC) effectively improve motor dysfunction after acute cerebral ischemia, but they require multiple treatments. Recently, electroacupuncture per-conditioning (EPEC) has demonstrated neuroprotective effects, indicating that this single-session intervention has short-term efficacy.

Objective: To evaluate the effect of EPEC at Huantiao (GB30) on motor recovery in acute cerebral ischemia mice.

View Article and Find Full Text PDF

The UCP2/PINK1/LC3b-mediated mitophagy is involved in the protection of NRG1 against myocardial ischemia/reperfusion injury.

Redox Biol

January 2025

Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China; Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China. Electronic address:

Available evidence indicates that neuregulin-1 (NRG-1) can provide a protection against myocardial ischemia/reperfusion (I/R) injury and is involved in various cardioprotective interventions by potential regulation of mitophagy. However, the molecular mechanisms linking NRG-1 and mitophagy remain to be clarified. In this study, both an in vivo myocardial I/R injury model of rats and an in vitro hypoxia/reoxygenation (H/R) model of H9C2 cardiomyocytes were applied to determine whether NRG-1 postconditioning attenuated myocardial I/R injury through the regulation of mitophagy and to explore the underlying mechanisms.

View Article and Find Full Text PDF

Histological differences among thrombi in thrombotic diseases.

Curr Opin Hematol

January 2025

Department of Pathology, Section of Oncopathology and Morphological Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.

Purpose Of Review: This review aims to summarize the histological differences among thrombi in acute myocardial infarction, ischemic stroke, venous thromboembolism, and amniotic fluid embolism, a newly identified thrombosis.

Recent Findings: Acute coronary thrombi have a small size, are enriched in platelets and fibrin, and show the presence of fibrin and von Willebrand factor, but not collagen, at plaque rupture sites. Symptomatic deep vein thrombi are large and exhibit various phases of time-dependent histological changes.

View Article and Find Full Text PDF

Mitochondrial transplantation (MT) is a promising therapeutic strategy that involves introducing healthy mitochondria into damaged tissues to restore cellular function. This approach has shown promise in treating cardiac diseases, such as ischemia-reperfusion injury, myocardial infarction, and heart failure, where mitochondrial dysfunction plays a crucial role. Transplanting healthy mitochondria into affected cardiac tissue has resulted in improved cardiac function, reduced infract size, and enhanced cell survival in preclinical studies.

View Article and Find Full Text PDF

Background: The prevalence of coronary chronic total occlusion (CTO) in coronary angiography (CAG) has risen with ageing populations, along with the expansion of CTO percutaneous coronary interventions (CTO-PCI). However, CTO-PCI encounters challenges such as undersized stents, dissection risks, and limited access to intravascular imaging (IVI), particularly in regions with limited health budgets. This study introduces the 'GIVE IT TIME TO SOBER UP - GITSU strategy', a two-session CTO-PCI approach where Thrombolysis in Myocardial Infarction (TIMI-3) antegrade flow is achieved without stent placement in the first session.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!