We have previously shown that fibroblast and keratinocyte supernatants up-regulate expression of mast cell characteristics in the human immature mast cell line HMC-1. This effect could not be induced in HMC-1 cells by the well-known mast cell growth factor stem cell factor (SCF), probably due to mutations of the SCF receptor c-Kit in these cells. Here we report the effects of several known fibroblast- and keratinocyte-derived growth factors, namely nerve growth factor (NGF), basic fibroblast growth factor, platelet-derived growth factor and transforming growth factor-beta, on mast cell differentiation, using HMC-1 cells as a model. NGF, at 0.1-50 ng/ml concentrations, caused a marked, dose-dependent up-regulation of tryptase, Fc epsilon RI and histamine within 10 days of culture, associated with an enhanced expression of mRNA for Fc epsilon RI and mast cell tryptase. On restriction analysis, only mast cell beta-tryptase, but not alpha-tryptase, could be demonstrated. Furthermore, the high-affinity NGF receptor (TrkA) was found at both the transcriptional and protein levels, while expression of the low-affinity NGF receptor was detectable at the mRNA level only. None of the other growth factors caused a significant alteration of the mast cell markers studied when added to HMC-1 cells at concentrations known to be biologically active in other culture systems. Immature human mast cells are thus induced to assume a more mature phenotype in vitro in response to NGF, most probably via stimulation of the high-affinity NGF receptor expressed on these cells. Besides SCF, NGF should therefore be considered as an additional mast cell growth factor that contributes to human mast cell maturation at tissue sites.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1364247 | PMC |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!