The BMP family of polypeptide growth factors has been shown to play diverse roles in establishing embryonic patterning and tissue fates. We report the cloning of the zebrafish homologue of BMP-2, examine its expression during embryogenesis, and find that it is localized to the distal end of the long arm of zebrafish chromosome 20. A missense mutation of the bmp2 gene has recently been shown to be responsible for the early dorsalized phenotype of the zebrafish swirl mutant [Kishimoto et al., 1997]. Given the dynamic expression of bmp2 in the developing embryo and the complex interactions of BMP signaling response in vertebrates, it is possible that other mutant phenotypes, due to altered bmp2 gene expression, will eventually map to or interact with this genetic locus.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/(SICI)1520-6408(1998)23:2<97::AID-DVG1>3.0.CO;2-0 | DOI Listing |
BMC Mol Cell Biol
January 2025
Department of Biochemistry, University at Buffalo, 3435 Main Street, Buffalo, NY, 14214, USA.
Background: Bioengineering of human teeth for replacement is an appealing regenerative approach in the era of gene therapy. Developmentally regulated transcription factors hold promise in the quest because these transcriptional regulators constitute the gene regulatory networks driving cell fate determination. Atonal homolog 1 (Atoh1) is a transcription factor of the basic helix-loop-helix (bHLH) family essential for neurogenesis in the cerebellum, auditory hair cell differentiation, and intestinal stem cell specification.
View Article and Find Full Text PDFBiomater Adv
January 2025
International Ph.D. Program in Innovative Technology of Biomedical Engineering and Medical Devices, Ming Chi University of Technology, New Taipei City 24301, Taiwan; Department of Mechanical Engineering, Chang Gung University, Taoyuan City 33302, Taiwan; Research Center for Intelligent Medical Devices, Ming Chi University of Technology, New Taipei City 24301, Taiwan. Electronic address:
Cell-containing biomaterial is a promising material for treating nonunion or critical bone defect. Human adipose-derived stem cells (hADSCs) are suitable for bone repair due to their abundance in the abdomen, thighs, and buttocks. However, the low osteogenic capacities of hADSCs hinder their extended development for bone regeneration application.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2025
Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan; Department of Food Sciences, Nutrition, and Nutraceutical Biotechnology, Shih Chien University, Taipei, Taiwan; Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan, Taiwan.
Osteoporosis, a significant bone disease predominantly affecting elderly and postmenopausal women, leads to increased bone fragility and fracture risk, presenting a major public health concern with substantial socioeconomic implications. This study investigated the therapeutic potential of Lactobacillus strains, known for their immunomodulatory properties, in an ovariectomy-induced osteoporosis mouse model. Among three tested strains Lactobacillus casei GKC1, Lactobacillus rhamnosus GKLC1, and Lactobacillus johnsonii GKJ2, GKC1 demonstrated superior efficacy in promoting osteogenesis-related gene expression, including alkaline phosphatase (ALP), bone morphogenetic protein 2 (BMP2) and runt-related transcription factor 2 (RUNX2).
View Article and Find Full Text PDFBioorg Chem
January 2025
National Center for Screening New Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China. Electronic address:
Two cyclic octadepsipeptides, microascusins A and B (1 and 2), were identified from the marine sponge-associated Microascus croci IMB19-064 co-cultivated with Escherichia coli. Their structures and conformations in solution were determined by comprehensive spectroscopic data analysis. The absolute configurations of amino and hydroxy acids were determined by the advanced Marfey's and O-Marfey's methods, respectively, as well as chiral-phase HPLC analysis.
View Article and Find Full Text PDFMolecules
December 2024
Graduate School of Pharmaceutical Sciences, Hiroshima International University, 5-1-1, Hirokoshingai, Kure 737-0112, Japan.
Farnesoid X receptor (FXR), a nuclear receptor, is expressed in calvaria and bone marrow stromal cells and plays a role in bone homeostasis. However, the mechanism of FXR-activated osteoblast differentiation remains unclear. In this study, we investigated the regulatory mechanism underlying FXR-activated osteoblast differentiation using bone morphogenetic protein-2 (BMP-2)-induced mouse ST-2 mesenchymal stem cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!