Glutamate transport in nearly pure rat cortical neurons in culture (less than 0.2% astrocytes) is potently inhibited by dihydrokainate, l-serine-O-sulphate, but not by l-alpha-amino-adipate. This system allows for a test of the hypothesis that glutamate transport is important for protecting neurons against the toxicity of endogenous synaptically released glutamate. In support of this hypothesis, a 20-24 h exposure to 1 mm dihydrokainate reduced cell survival to only 14.8 +/- 9.8% in neuronal cultures (P < 0.001; n = 3), although it had no effect on neuronal survival in astrocyte-rich cultures (P > 0.05; n = 3). Dihydrokainate also significantly caused accumulation of glutamate in the extracellular medium of cortical neuronal cultures (6.6 +/- 4.9 micrometer, compared to 1.2 +/- 0.3 micrometer in control, n = 14, P < 0.01). The neurotoxicity of dihydrokainate was blocked by 10 micrometer MK-801, 10 micrometer tetrodotoxin, and an enzyme system that degrades extracellular glutamate. The latter two also abolished the accumulation of glutamate in the extracellular medium. Dihydrokainate (1 mm) inhibited the 45calcium uptake stimulated by 30 micrometer N-methyl-d-aspartate (NMDA), but not by higher concentrations consistent with a weak antagonist action of dihydrokainate at the NMDA receptor. Whole cell recordings showed that 1 mm dihydrokainate produced approximately 25% inhibition of 30 micrometer NMDA-induced current in cortical neurons. Dihydrokainate (1 mm) alone generated a small current (17% of the current produced by 30 micrometer NMDA) that was blocked by 30 micrometer 5,7-dichlorokynurenate and only weakly by 10 micrometer cyano-7-nitroquinoxaline-2,3-dione (CNQX). These results suggest that the toxicity of dihydrokainate in neuronal cultures is due to its ability to block glutamate transport in these cultures, and that dihydrokainate-sensitive neuronal glutamate transport may be important in protecting neurons against the toxicity of synaptically released glutamate.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1460-9568.1998.00256.xDOI Listing

Publication Analysis

Top Keywords

glutamate transport
20
cortical neurons
12
synaptically released
12
released glutamate
12
neuronal cultures
12
glutamate
11
dihydrokainate
9
micrometer
9
dihydrokainate-sensitive neuronal
8
neuronal glutamate
8

Similar Publications

Biomarkers.

Alzheimers Dement

December 2024

Vaccinex, Inc., Rochester, NY, USA.

Background: The earliest recognized biomarker of AD is deposition of Aβ amyloid that leads to formation of plaques and may, over time, trigger or at least be followed by gliosis/neuroinflammation and neurofibrillary tangles, accompanied by neurodegenerative changes including neuronal and synaptic loss. We have previously reported that semaphorin 4D (SEMA4D), the major ligand of plexin B receptors expressed on astrocytes, is upregulated in diseased neurons during progression of AD and Huntington's disease (HD). Binding of SEMA4D to PLXNB receptors triggers astrocyte reactivity, leading to loss of neuroprotective homeostatic functions, including downregulation of glutamate and glucose transporters (doi:10.

View Article and Find Full Text PDF

Biomarkers.

Alzheimers Dement

December 2024

Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.

Background: Glutamate is the main excitatory neurotransmitter in the brain, acting through ionotropic and metabotropic receptors, such as the neuronal metabotropic glutamate receptor 5 (mGluR5). The radiotracer [C]ABP688 binds allosterically to the mGluR5, providing a valuable tool to understand glutamatergic function. We have previously shown that neuronal [C]ABP688 binding is influenced by astrocyte activation.

View Article and Find Full Text PDF

Background: Our laboratory has demonstrated that the NLRP3 inflammasome has a critical role in the microglial innate immune response to Alzheimer's disease (AD)-related peptides, triggering the release of cleaved-caspase-1 and IL-1β. NLRP3 activation was found in post-mortem tissue from individuals with AD (Heneka et al., 2013) and in transgenic models of AD (APP/PS1 mice).

View Article and Find Full Text PDF

Alzheimer's Imaging Consortium.

Alzheimers Dement

December 2024

Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.

Background: Glutamate is the main excitatory neurotransmitter in the brain, acting through ionotropic and metabotropic receptors, such as the neuronal metabotropic glutamate receptor 5 (mGluR5). The radiotracer [11C]ABP688 binds allosterically to the mGluR5, providing a valuable tool to understand glutamatergic function. We have previously shown that neuronal [11C]ABP688 binding is influenced by astrocyte activation.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Certara SimCyp, Berwyn, PA, USA.

Background: While a number of recent anti-amyloid antibodies demonstrated a robust reduction of amyloid biomarkers in clinical trials, the impact on functional improvement is much more variable. We hypothesize that this larger variability is driven by comedications, common genotype variants and underlying tau pathology.

Method: In a previously calibrated computational neuroscience model of ADAS-Cog, we implemented the effect of soluble amyloid monomers and oligomers on glutamate and nicotinic AChR neurotransmission and the effect of intracellular tau oligomers on voltage-gated Na and K+ channels and synaptic density.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!