In a recent paper [R.R. Holson, J.F. Bowyer, P. Clausing, B. Gough, Methamphetamine-stimulated striatal dopamine release declines rapidly over time following microdialysis probe insertion, Brain Res. 739 (1996) 301-307] we reported that methamphetamine-stimulated striatal dopamine release declined rapidly over the first eight hours following microdialysis probe insertion. This decline was strictly a function of time post-probe implantation, and not due to tolerance or desensitization. To further examine this phenomenon, we subjected rats to three brief pulses of several DA-releasing compounds at 2, 4 and 6 h post-probe insertion, and compared these results to those caused by a single pulse 6 h post-insertion, or in some cases to pulses given more than 24 h post-insertion. We found that when buproprion, a dopamine reuptake blocker, was infused briefly into the striatum via the microdialysis probe, there was a pronounced drop in the amount of dopamine released at 6 h vs. 2 h post-insertion; this drop was not due to repeated exposure, since dopamine release at 6 h post-insertion was the same for a single pulse, or when preceded by two earlier pulses. Twenty-four hours later, buproprion-stimulated dopamine release was still lower, but did not appear to drop further thereafter. Potassium-stimulated dopamine release, on the other hand, dropped rapidly over the first 8 h post-insertion, and this decline continued throughout the 24-32 h interval post-insertion. Similarly, a single i.p. injection of 0.5 mg/kg haloperidol released three times as much dopamine when given two compared to six hours post-implantation. Both bupropion- and potassium-stimulated dopamine release were accompanied by declines in extracellular DOPAC concentrations, and these declines were the same 2 or 26 h post-insertion. In contrast, haloperidol exposure increased extracellular DOPAC, and this haloperidol-stimulated DOPAC increase was also greatly attenuated at 6 compared to 2 h post-insertion. We conclude that there is a general decline over time post-probe implantation in the ability of the striatal dopamine system to release dopamine, and perhaps to increase dopamine synthesis, in response to pharmacological challenges.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0006-8993(98)00816-6 | DOI Listing |
Behav Brain Funct
March 2025
Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.
Background: Major depressive disorder is a significant global cause of disability, particularly among adolescents. The dopamine system and nearby neuroinflammation, crucial for regulating mood and processing rewards, are central to the frontostriatal circuit, which is linked to depression. This study aimed to investigate the effect of post-weaning isolation (PWI) on depression in adolescent mice, with a focus on exploring the involvement of microglia and dopamine D1 receptor (D1R) in the frontostriatal circuit due to their known links with mood disorders.
View Article and Find Full Text PDFEur J Nutr
March 2025
Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea.
Purpose: Parkinson's disease (PD) disrupts the regulation of neurotransmitters in the brain, causing patients to experience not only motor symptoms but also non-motor symptoms such as depression. 6-shogaol (6S) is a potential neuro-nutraceutical derived from ginger, and is known to ameliorate motor symptoms by suppressing inflammation in PD mice. In this study, we investigated whether 6S can attenuate motor symptoms and depression-like behaviors through neurotransmitter regulation and to elucidate which neurotransmitters are intimately correlated with these effects.
View Article and Find Full Text PDFDrugs of abuse in adolescence impact brain maturation and increase psychiatric risk, with differences in sensitivity between males and females. Amphetamine in adolescent male, but not female mice, causes dopamine axons intended to innervate the nucleus accumbens and to grow ectopically to the prefrontal cortex (PFC). This is mediated by drug-induced downregulation of the Netrin-1 receptor DCC.
View Article and Find Full Text PDFVentral tegmental area (VTA) dopamine neurons are of great interest for their central roles in motivation, learning, and psychiatric disorders. While hypotheses of VTA dopamine neuron function posit a homogenous role in behavior (e.g.
View Article and Find Full Text PDFPregnancy and postpartum experiences represent transformative physiological states that impose lasting demands on the maternal body and brain, resulting in lifelong neural adaptations. However, the precise molecular mechanisms driving these persistent alterations remain poorly understood. Here, we used brain-wide transcriptomic profiling to define the molecular landscape of parity-induced neural plasticity, identifying the dorsal hippocampus (dHpc) as a key site of transcriptional remodeling.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!