EMMPRIN (extracellular matrix metalloproteinase inducer) also known as CD147 and basigin, is a member of the immunoglobulin family that is present on the surface of tumor cells and stimulates nearby fibroblasts to synthesize matrix metalloproteinases. Using our EMMPRIN cDNA, we have isolated a cosmid clone that contains the human EMMPRIN gene. S1 analysis with a fragment of the gene clone and primer extension of the mRNA was performed to determine the transcription start site. PCR and sequence analysis have defined the exon/intron organization of the gene and show that it is highly conserved with the mouse EMMPRIN/basigin gene. About 950 bases of the 5'-flanking region were examined for transcription factor consensus binding sites, locating three SP1 sites and two AP2 sites. The transcription start site was found to be located in a CpG island. Elements in the proximal promoter region were conserved in the human and mouse genes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0378-1119(98)00400-4DOI Listing

Publication Analysis

Top Keywords

human emmprin
8
matrix metalloproteinases
8
metalloproteinases emmprin
8
transcription start
8
start site
8
characterization gene
4
gene human
4
emmprin
4
emmprin tumor
4
tumor cell
4

Similar Publications

Reticulocyte Binding Protein Homologue (RH5), a leading malaria vaccine candidate, is essential for erythrocyte invasion by the parasite, interacting with the human host receptor, basigin. RH5 has a small number of polymorphisms relative to other blood-stage antigens, and studies have shown that vaccine-induced antibodies raised against RH5 are strain-transcending, however most studies investigating RH5 diversity have been done in Africa. Understanding the genetic diversity and evolution of malaria antigens in other regions is important for their validation as vaccine candidates.

View Article and Find Full Text PDF

Chemoresistance in Pancreatic Cancer: The Role of Adipose-Derived Mesenchymal Stem Cells and Key Resistance Genes.

Int J Mol Sci

January 2025

Regenerative Medicine and Cellular Pharmacology Laboratory, Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary.

Drug resistance is a significant challenge in pancreatic ductal adenocarcinoma (PDAC), where stromal elements such as adipose-derived mesenchymal stem cells (ASCs) contribute to a chemoresistant tumor microenvironment (TME). This study explored the effects of oxaliplatin (OXP) and 5-fluorouracil (5-FU) on PDAC cells (Capan-1) and ASCs to investigate the mechanisms of chemoresistance. While OXP and 5-FU reduced Capan-1 viability in a dose- and time-dependent manner, ASCs demonstrated high resistance, maintaining > 90% viability even at cytotoxic doses.

View Article and Find Full Text PDF

Basigin in cerebrovascular diseases: Roles, mechanisms, and therapeutic target potential.

Eur J Pharmacol

February 2025

Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou City, Henan Province, 450000, China. Electronic address:

Cerebrovascular diseases are major global health issues, responsible for significant morbidity and mortality. Basigin (additionally called CD147 or EMMPRIN) is a glycosylated transmembrane protein that facilitates intercellular communication. Recent research has highlighted the critical role of Basigin in inducing matrix metalloproteinases (MMPs), which contribute to the progression of cerebrovascular diseases.

View Article and Find Full Text PDF

Targeting autophagy in HCC treatment: exploiting the CD147 internalization pathway.

Cell Commun Signal

December 2024

Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, 710032, China.

Background/aims: Chemotherapy resistance in liver cancer is a major clinical issue, with CD147 playing a vital role in this process. However, the specific mechanisms underlying these processes remain largely unknown. This study investigates how CD147 internalization leads to cytoprotective autophagy, contributing to chemotherapy resistance in hepatocellular carcinoma (HCC).

View Article and Find Full Text PDF

Transporters are critical for maintaining the homeostasis of metabolites within cells, organelles, and extracellular fluids. Various transporters have been targeted for development as pharmaceutical therapies, including glucose transporter (SLC5A2/SGLT2) and urate transporter (SLC22A12/URAT1). The solute carrier transporter family includes many orphan transporters with unknown physiological functions and substrates, largely because of the difficulties in optimizing the transporter probes and constructing convenient evaluation systems for functional analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!