Ammonia is a major concern in biotechnology because it often limits recombinant protein production by animal cells. Conditions, such as ammonia accumulation, in large-scale production systems can parallel those that develop within fast-growing solid tumors such as small cell lung cancer (SCLC). Ammonia's specific inhibition of the sialylation of secreted glycoproteins is well documented, but it is not known how ammonia affects membrane-bound proteins, nor what role it may have on important glycosylation determinants in cancer. We therefore examined the effects of NH4Cl on polysialic acid (PolySia) in the neural cell adhesion molecule (NCAM). By using flow cytometry combined with two NCAM antibodies, one specific for the peptide backbone and another that recognizes PolySia chains, we show that ammonia causes rapid, dose-dependent, and reversible inhibition of NCAM polysialylation in Chinese hamster ovary (CHO) and SCLC NCI-N417 cells. The decrease in PolySia was accompanied by a small increase in NCAM, suggesting that the changes were specific to the oligosaccharide. Inhibition by ammonia was greater for CHO cells, with PolySia cell surface content decreasing to 10% of control after a 4-day culture with 10 mM NH4Cl, while N417 cell PolySia was reduced by only 35%. Ammonia caused a 60% decrease in the CHO cell yield from glucose, while N417 cells were barely affected, suggesting that increased resistance to ammonia by N41 7 cells is a global rather than glycosylation-specific phenomenon. The data presented show that the tumor microenvironment may be an important factor in the regulation of PolySia expression.

Download full-text PDF

Source
http://dx.doi.org/10.1002/(SICI)1097-4652(199811)177:2<248::AID-JCP7>3.0.CO;2-NDOI Listing

Publication Analysis

Top Keywords

ammonia
8
neural cell
8
cell adhesion
8
adhesion molecule
8
polysialylation chinese
8
chinese hamster
8
hamster ovary
8
small cell
8
cell lung
8
lung cancer
8

Similar Publications

Influence of forage-to-concentrate ratio on the effects of a radiata pine bark extract on methane production and fermentation using the rumen simulation technique.

Animal

December 2024

Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Campus Chillán, Chillán 3812120, Chile. Electronic address:

Climate change and food safety standards have intensified research into plant-based compounds as alternatives to dietary supplements in animal feed. These compounds can reduce enteric methane (CH) emissions and the formation of ruminal ammonia. This study investigated the effects of radiata pine bark extract (PBE) supplementation on CH production, ruminal fermentation parameters, and nutrient disappearance using the rumen simulation technique in diets with different forage-to-concentrate (F:C) ratios.

View Article and Find Full Text PDF

Nitrous oxide production via enzymatic nitroxyl from the nitrifying archaeon .

Proc Natl Acad Sci U S A

January 2025

Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, NY 14853.

Ammonia oxidizing archaea (AOA) are among the most abundant microorganisms on earth and are known to be a major source of nitrous oxide (NO) emissions, although biochemical origins of this NO remain unknown. Enzymological details of AOA nitrogen metabolism are broadly unavailable. We report the recombinant expression, purification, and characterization of a multicopper oxidase, Nmar_1354, from the AOA .

View Article and Find Full Text PDF

In various applications, the pore structure of a porous medium must be controlled to facilitate heat and mass transfer, which considerably influence the system performance. Freeze-casting is a versatile technique for creating aligned pores; However, because of the complexity of the associated equipment and the energy inefficiency of liquid-nitrogen-based cooling in a room-temperature environment, limits scalability for industrial applications. This study is aimed at establishing a novel freeze-casting strategy with a simple mold design combining heat-conductive and insulating materials for long-range pore alignment via directional ice growth under deep-freezing conditions, rendering it feasible for large-scale production.

View Article and Find Full Text PDF

Rationale: Extraterrestrial amines and ammonia are critical ingredients for the formation of astrobiologically important compounds such as amino acids and nucleobases. However, conventional methods for analyzing the composition and isotopic ratios of volatile amines suffer from lengthy derivatization and purification procedures, high sample mass consumption, and chromatographic interferences from derivatization reagents and non-target compounds.

Methods: Here we demonstrate a highly efficient method to analyze the composition and compound specific isotopic ratios of C to C amines as well as ammonia based on solid phase micro-extraction (SPME) on-fiber derivatization.

View Article and Find Full Text PDF

Hepatic encephalopathy (HE) is traditionally associated with hepatic parenchymal diseases, such as acute liver failure and cirrhosis. Its prevalence in non-cirrhotic portal hypertension (NCPH) patients, extrahepatic portal vein obstruction (EHPVO), and non-cirrhotic portal fibrosis (NCPF) is less well described. HE in NCPH allows one to study the effect of portosystemic shunting and ammonia without significant hepatic parenchymal injury.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!