We studied calcium signaling in a newly described pancreatic cell line, GK-P3, that expresses functional amino acid neurotransmitter receptors. GK-P3 cells express the first strychnine-sensitive glycine receptors reported in a permanent cell line. In addition, GK-P3 cells express alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors. Both types of amino acid receptors showed electrophysiological and pharmacological behavior similar to their neuronal counterparts. The glycine receptors were permeable to Cl- and blocked by the selective antagonist strychnine. AMPA receptors showed limited permeability to Ca2+, were blocked by 6-cyano-2, 3-dihydroxy-7-nitroquinoxaline, and were potentiated by cyclothiazide. Interestingly, activation of either receptor type increased intracellular Ca2+ measured by digital imaging of Fura-2 fluorescence. These Ca2+ signals were completely blocked by 30 microM La3+, suggesting that the Ca2+ entered the cells largely through voltage-dependent Ca2+ channels. Alterations in the extracellular concentrations of Cl- and/or HCO3- had only marginal effects on glycine-evoked Ca2+ signals. However, increases in intracellular Ca2+ mediated by AMPA receptors were absent when the extracellular Na+ was replaced with an impermeant cation, N-methyl-D-glucamine. We conclude that activation of ligand-gated cation or anion channels depolarize GK-P3 cells sufficiently to activate their voltage-gated Ca2+ channels leading to increases in intracellular Ca2+ concentration. Thus, glycine and glutamate receptors may regulate Ca2+-dependent secretory mechanisms in islet cells by altering the membrane potential of these cells. Our data in GK-P3 cells support the growing weight of evidence for a role of amino acid neurotransmitters in pancreatic islets and introduce strychnine-sensitive glycine receptors as a novel target of amino acid neurotransmitter regulation in islets.
Download full-text PDF |
Source |
---|
Appl Microbiol Biotechnol
January 2025
College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224051, PR China.
L-valine holds wide-ranging applications in medicine, food, feed, and various industrial sectors. Escherichia coli, a pivotal strain in industrial L-valine production, features a concise fermentation period and a well-defined genetic background. This study focuses on mismatch repair genes (mutH, mutL, mutS, and recG) and genes associated with mutagenesis (dinB, rpoS, rpoD, and recA), employing a high-glucose adaptive culture in conjunction with metabolic modifications to systematically screen for superior phenotypes.
View Article and Find Full Text PDFNeuroinformatics
January 2025
Laboratory for Applied Genomics and Bioinnovations, Instituto Oswaldo Cruz - Fiocruz, Rio de Janeiro, RJ, Brazil.
Multiple sclerosis (MS) is a neurological disease causing myelin and axon damage through inflammatory and autoimmune processes. Despite affecting millions worldwide, understanding its genetic pathways remains limited. The choroid plexus (ChP) has been studied in neurodegenerative processes and diseases like MS due to its dysregulation, yet its role in MS pathophysiology remains unclear.
View Article and Find Full Text PDFFunct Integr Genomics
January 2025
Department of Zoology, University of Gour Banga, Malda, 732103, India.
Rice (Oryza sativa L.), Poaceae family, forms staple diet of half of world's population, and brinjal (Solanum melongena L.), an important solanaceous crop, are consumed worldwide.
View Article and Find Full Text PDFPlant Mol Biol
January 2025
College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin, 300392, China.
Soil salinity poses a significant environmental challenge for the growth and development of blueberries. However, the specific mechanisms by which blueberries respond to salt stress are still not fully understood. Here, we employed a comprehensive approach integrating physiological, metabolomic, and transcriptomic analyses to identify key metabolic pathways in blueberries under salt stress.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2025
Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland.
A new strategy has been developed to successfully produce the active component danshensu ex vivo. For this purpose, phenylalanine dehydrogenase from Bacillus sphaericus was combined with the novel hydroxyphenylpyruvate reductase from Mentha x piperita, thereby providing an in situ cofactor regeneration throughout the conversion process. The purified enzymes were co-immobilized and subsequently employed in batch biotransformation, resulting in 60% conversion of 10 mM L-dopa within 24 h, with a catalytic amount of NAD as cofactor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!