Adoptive transfer of virus-specific memory lymphocytes can be used to identify factors and mechanisms involved in the clearance of persistent virus infections. To analyze the role of B cells in clearing persistent infection with lymphocytic choriomeningitis virus (LCMV), we used B-cell-deficient muMT/muMT (B-/-) mice. B-/- mice controlled an acute LCMV infection with the same kinetics and efficiency as B-cell-competent (B+/+) mice via virus-specific, major histocompatibility complex (MHC) class I-restricted CD8(+) cytotoxic T lymphocytes (CTL). CTL from B-/- and B+/+ mice were equivalent in affinity to known LCMV CTL epitopes and had similar CTL precursor frequencies (pCTL). Adoptive transfer of memory cells from B+/+ mice led to virus clearance from persistently infected B+/+ recipients even after in vitro depletion of B cells, indicating that B cells or immunoglobulins are not required in the transfer population. In contrast, transfer of memory splenocytes from B-/- mice failed to clear virus. Control of virus was restored neither by transferring higher numbers of pCTL nor by supplementing B-/- memory splenocytes with LCMV-immune B cells or immune sera. Instead, B-/- mice were found to have a profound CD4 helper defect. Furthermore, compared to cultured splenocytes from B+/+ mice, those from B-/- mice secreted less gamma interferon (IFN-gamma) and interleukin 2, with differences most pronounced for CD8 T cells. While emphasizing the importance of CD4 T-cell help and IFN-gamma in the control of persistent infections, the CD4 T-helper and CD8 T-cell defects in B-/- mice suggest that B cells contribute to the induction of competent T effector cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC110340 | PMC |
http://dx.doi.org/10.1128/JVI.72.11.9208-9216.1998 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!