Palmitoyl carnitine chloride (PCC) has been shown to be an effective enhancer of intestinal transport of hydrophilic molecules. The exact mechanism by which the epithelial barrier function is decreased is not clear. In an attempt to elucidate the mechanism of action of PCC, we studied the relationship among absorption enhancement, cell viability and tight junction protein localization in the human colonic Caco-2 cell line and the rat small intestinal cell line IEC-18. Filter-grown cells were exposed to 0 to 1 mM PCC for 30 min, and the efficacy of PCC treatment was determined by assessing the transepithelial electrical resistance and the apparent permeability for mannitol and PEG-4000. Membrane lysis and cytotoxicity were assessed by measurement of lactate dehydrogenase leakage and uptake of propidium iodide and neutral red. The immunolocalization of the tight junctional protein ZO-1 was quantified using CSLM and image-processing software. In both cell lines, PCC caused a dose-dependent decrease in transepithelial electrical resistance and a concomitant increase in the permeability for mannitol and PEG-4000. The transport enhancement was accompanied by an increase in apical membrane permeability and a reduction in cell viability. At higher PCC concentrations (>/=0.4 mM), the distribution of the tight junctional protein ZO-1 was changed and cells were unable to recover viability. PCC is effective as an absorption enhancer for hydrophilic macromolecules. However, lytic effects on the cell membrane and reduced cell viability were concomitant with transport enhancement.

Download full-text PDF

Source

Publication Analysis

Top Keywords

cell viability
12
absorption enhancement
8
palmitoyl carnitine
8
pcc effective
8
transepithelial electrical
8
electrical resistance
8
permeability mannitol
8
mannitol peg-4000
8
tight junctional
8
junctional protein
8

Similar Publications

Significance of adding chemotherapy to radiotherapy in the treatment of T2N0 glottic cancer.

Jpn J Clin Oncol

January 2025

Department of Otorhinolaryngology, Head and Neck Surgery, Yokohama City University, School of Medicine, Yokohama, Japan.

The prognosis for T2N0 glottic squamous cell carcinoma (SCC) is generally favorable, with a 5-year overall survival rate of 79%-96% achieved with radiotherapy (RT), the standard nonsurgical treatment for this condition. However, the local control rate for T2N0 glottic SCC treated with RT remains suboptimal, with a 5-year local control rate of only 65%-80%. Local residual disease or recurrence following RT for T2N0 glottic SCC often leads to difficulties in laryngeal preservation.

View Article and Find Full Text PDF

Dihydromyricetin (Dih), a naturally occurring flavonoid, has been identified to exert a protective effect against ischemia/reperfusion injury. However, the detailed mechanisms remain unclear. Here we investigated the biological role of Dih in preventing hypoxia/reoxygenation (H/R) injury in cardiomyocytes.

View Article and Find Full Text PDF

This study aims to investigate the expression of seven cancer testis antigens (MAGE-A1, MAGE-A4, MAGE-A10, MAGE-A11, PRAME, NY-ESO-1 and KK-LC-1) in pan squamous cell carcinoma and their prognostic value, thus assessing the potential of these CTAs as immunotherapeutic targets. The protein expression of these CTAs was evaluated by immunohistochemistry in 60 lung squamous cell carcinoma (LUSC), 62 esophageal squamous cell carcinoma (ESCA) and 62 head and neck squamous cell carcinoma (HNSC). The relationship between CTAs expression and progression-free survival (PFS) was assessed.

View Article and Find Full Text PDF

Chimeric Antigen Receptor (CAR) T cell therapy has revolutionized cancer treatment and is now being explored for other diseases, such as autoimmune disorders. While the tumor microenvironment (TME) in cancer is often immunosuppressive, in autoimmune diseases, the environment is typically inflammatory. Both environments can negatively impact CAR T cell survival: the former through direct suppression, hypoxia, and nutrient deprivation, and the latter through chronic T cell receptor (TCR) engagement, risking exhaustion.

View Article and Find Full Text PDF

One hallmark of cancer is the upregulation and dependency on glucose metabolism to fuel macromolecule biosynthesis and rapid proliferation. Despite significant pre-clinical effort to exploit this pathway, additional mechanistic insights are necessary to prioritize the diversity of metabolic adaptations upon acute loss of glucose metabolism. Here, we investigated a potent small molecule inhibitor to Class I glucose transporters, KL-11743, using glycolytic leukemia cell lines and patient-based model systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!