AI Article Synopsis

  • HVEM is a member of the TNF receptor family that facilitates herpesvirus entry into cells and activates NF-kappaB and AP-1 when overexpressed.
  • A novel TNF-related protein, HVEM-L, binds specifically to HVEM-Fc with a strong affinity and is confirmed in both soluble and membrane forms.
  • HVEM-L is expressed in immune cells and tissues, promotes T lymphocyte proliferation, inhibits growth of HT-29 cells, and has a weak effect on NF-kappaB-dependent transcription.

Article Abstract

Herpesvirus entry mediator (HVEM), a member of the tumor necrosis factor (TNF) receptor family, mediates herpesvirus entry into cells during infection. Upon overexpression, HVEM activates NF-kappaB and AP-1 through a TNF receptor-associated factor (TRAF)-mediated mechanism. Using an HVEM-Fc fusion protein, we screened soluble forms of novel TNF-related proteins derived from an expressed sequence tag data base. One of these, which we designated HVEM-L, specifically bound to HVEM-Fc with an affinity of 44 nM. This association was confirmed with soluble and membrane forms of both receptor and ligand. HVEM-L mRNA is expressed in spleen, lymph nodes, macrophages, and T cells and encodes a 240-amino acid protein. A soluble, secreted form of the protein stimulates proliferation of T lymphocytes during allogeneic responses, inhibits HT-29 cell growth, and weakly stimulates NF-kappaB-dependent transcription.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.273.42.27548DOI Listing

Publication Analysis

Top Keywords

herpesvirus entry
12
entry mediator
8
ligand hvem-l
8
stimulates proliferation
8
cell growth
8
mediator ligand
4
hvem-l novel
4
novel ligand
4
ligand hvem/tr2
4
hvem/tr2 stimulates
4

Similar Publications

Epstein-Barr virus (EBV), an oncogenic gamma-herpesvirus, belongs to group 1 carcinogen and is implicated in various cancers, including gastric cancer. Aurora Kinase A is a major mitotic protein kinase that regulates mitotic progression; overexpression and hyperactivation of AURKA commonly promote genomic instability in many tumours. However, the relationship of functional residues of AURKA and EBV in gastric cancer progression remains unknown.

View Article and Find Full Text PDF

Kaposi's sarcoma-associated herpesvirus (KSHV) is a human gammaherpesvirus associated with Kaposi's sarcoma and B cell malignancies. Like all herpesviruses, KSHV contains conserved envelope glycoproteins (gps) involved in virus binding, entry, assembly, and release from infected cells, which are also targets of the immune response. Due to the lack of a reproducible animal model of KSHV infection, the precise functions of the KSHV gps during infection are not completely known.

View Article and Find Full Text PDF

Interaction with host cell receptors initiates internalization of Kaposi's sarcoma-associated herpesvirus (KSHV) particles. Fusion of viral and host cell membranes, which is followed by release of the viral capsid into the cytoplasm, is executed by the core fusion machinery composed of glycoproteins H (gH), L (gL), and B (gB), that is common to all herpesviruses. KSHV infection has been shown to be sensitive to inhibitors of vacuolar acidification, suggestive of low pH as a fusion trigger.

View Article and Find Full Text PDF

[Expression of BTLA/HVEM axis in hematological and prospects for immune target therapy].

Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi

January 2025

Department of Hematology, Lanzhou University Second Hospital, Lanzhou 730000, China. *Corresponding authors, E-mail:

Article Synopsis
  • BTLA is an inhibitory immune checkpoint that interacts with HVEM to regulate immune balance and maintain immune tolerance on the same cell, while also affecting different immune cells to suppress immune responses.
  • Dysregulation of the BTLA/HVEM interaction can lead to impaired immune cell function, allowing tumor cells to evade immune detection and progress.
  • Research indicates that BTLA and HVEM are often abnormally expressed in various tumors, making them potential targets for future immunotherapy approaches in treating hematologic malignancies.
View Article and Find Full Text PDF

Pseudorabies virus (PRV) is one of the highly contagious pathogens causing significant economic losses to the swine industry worldwide. More importantly, PRV is becoming a potential "life-threatening zoonosis" since the human-originated PRV strain was first isolated in 2019. Previously we found that the canonical Wnt/β-catenin pathway facilitates PRV proliferation, while the underlying mechanism remains unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!