Human protein S (PS) potentiates the anticoagulant activity of human but not bovine activated protein C (APC), whereas bovine PS is a cofactor to APC from both species. The structural requirements for the specificity of the APC cofactor function of human PS are located in its thrombin-sensitive region (TSR) and the first epidermal growth factor (EGF1)-like module. To elucidate which residues in these two modules determine the specificity of the APC cofactor activity, 41 human PS mutants were expressed. All mutants were cofactors to human APC and some also to bovine APC. Residues in TSR (positions 49 and 52) and EGF1 (residues 97 and 106) together determined the specificity of the APC cofactor function, whereas substitution of individual residues did not change specificity. Bovine PS, and mutants expressing cofactor activity to bovine APC, stimulated phospholipid binding of bovine APC. In contrast, human PS and mutants lacking cofactor activity to bovine APC failed to support binding of bovine APC to phospholipids. These data indicate that residues in TSR and EGF1 cause the specificity of the APC cofactor activity and support the concept that key residues in these two modules interact with APC on the phospholipid surface.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.273.42.27449DOI Listing

Publication Analysis

Top Keywords

bovine apc
20
specificity apc
16
apc cofactor
16
cofactor activity
16
apc
13
cofactor function
12
thrombin-sensitive region
8
epidermal growth
8
growth factor
8
activated protein
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!