Analysis of the postnatal growth of visual cortex.

Vis Neurosci

Department of Psychology, McMaster University, Hamilton, Ontario, Canada.

Published: December 1998

Development and growth of V1 begins during embryogenesis and continues postnatally. The growth of V1 has direct implications on the organization of features such as the retinotopic map and the pattern of visual cortical columns. We have examined the postnatal growth and two-dimensional shape of V1 in macaque monkeys, cats, and rats. The perimeter, area, and anterior-posterior length of V1 were measured from unfolded and flattened sections from neonatal and adult animals from each of these species. Although there were substantial differences in the overall amount of postnatal growth, from 18% in macaque monkeys to more than 100% in cats, in all three species the shape of V1 did not change during development. Thus, growth of the mammalian visual cortex is well described as an isotropic expansion, so the layout of the global features, such as the arrangement of ocular dominance columns and the retinotopic map, does not need to change during development. Furthermore, quantification of the shape confirms the observations that there is a similar, egg-like oval shape to the visual cortex of these mammalian species.

Download full-text PDF

Source
http://dx.doi.org/10.1017/s0952523898155049DOI Listing

Publication Analysis

Top Keywords

postnatal growth
12
visual cortex
12
development growth
8
retinotopic map
8
macaque monkeys
8
change development
8
growth
6
analysis postnatal
4
visual
4
growth visual
4

Similar Publications

In China, medicinal with double flowers (DFs) does not produce seeds, yet it possesses significantly higher paeoniflorin content compared with its single-flowered counterpart. The propagation of medicinal with DFs relies solely on rhizomes. However, due to economic motivations, the rhizomes of medicinal with single flowers (SFs) are often mixed with those of medicinal with DFs.

View Article and Find Full Text PDF

As the catalytic subunit of the Elongator complex, Elongator protein 3 (Elp3) plays a crucial role in multiple physiological processes, including growth, development and immune responses. Previous studies on Elp3 have focused on Caenorhabditis elegans, Drosophila melanogaster, Homo sapiens (human) or Mus musculus (mouse), whereas there are few reports on Elp3 in agricultural pests. Here, the role of TcElp3 in reproduction in the red flour beetle, Tribolium castaneum, was investigated, and the underlying mechanisms were explored.

View Article and Find Full Text PDF

Neovascular age-related macular degeneration (nAMD), characterized by choroidal neovascularization (CNV), is one of the leading causes of severe visual impairment and irreversible vision loss around the world. Subretinal fibrosis (SRF) contributes to the incomplete response to anti-vascular endothelial growth factor (VEGF) treatment and is one of the main reasons for long-term poor visual outcomes in nAMD. Reducing SRF is urgently needed in the anti-VEGF era.

View Article and Find Full Text PDF

The controllable synthesis of epitaxial nanopillar arrays is fundamentally important to the development of advanced electrical and optical devices. However, this fascinating growth method has rarely been applied to the bottom-up synthesis of plasmonic nanostructure arrays (PNAs) with many broad, important, and promising applications in optical sensing, nonlinear optics, surface-enhanced spectroscopies, photothermal conversion, photochemistry, etc. Here, a one-step epitaxial approach to single-crystalline NbTiN (NbTiN) nanopillar arrays based on the layer plus island growth mode is demonstrated by strain engineering.

View Article and Find Full Text PDF

Functionalized Microsphere Platform Combining Nutrient Restriction and Combination Therapy to Combat Bacterial Infections.

ACS Appl Mater Interfaces

January 2025

Animal-Derived Food Safety Innovation Team, College of Veterinary Medicine, Anhui Agricultural University, Hefei 230036, China.

The escalating prevalence of multidrug-resistant (MDR) bacterial infections has emerged as a critical global health crisis, undermining the efficacy of conventional antibiotic therapies. This pressing challenge necessitates the development of innovative strategies to combat MDR pathogens. Advances in multifunctional drug delivery systems offer promising solutions to reduce or eradicate MDR bacteria.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!