In Saccharomyces cerevisiae, Upf3p is required for nonsense-mediated mRNA decay (NMD). Although localized primarily in the cytoplasm, Upf3p contains three sequence elements that resemble nuclear localization signals (NLSs) and two sequence elements that resemble nuclear export signals (NESs). We found that a cytoplasmic reporter protein localized to the nucleus when fused to any one of the three NLS-like sequences of Upf3p. A nuclear reporter protein localized to the cytoplasm when fused to one of the NES-like sequences (NES-A). We present evidence that NES-A functions to signal the export of Upf3p from the nucleus. Combined alanine substitutions in the NES-A element caused a re-distribution of Upf3p to a subnuclear location identified as the nucleolus and conferred an Nmd- phenotype. Single mutations in NES-A failed to affect the distribution of Upf3p and were Nmd+. When an NES element from HIV-1 Rev was inserted near the C terminus of a mutant Upf3p containing multiple mutations in NES-A, the cytoplasmic distribution typical of wild-type Upf3p was restored but the cells remained phenotypically Nmd-. These results suggest that NES-A is a functional nuclear export signal. Combined mutations in NES-A may cause multiple defects in protein function leading to an Nmd- phenotype even when export is restored.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/jcs.111.21.3129 | DOI Listing |
Stem Cell Res Ther
January 2025
College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China.
Background: The aging of bone marrow mesenchymal stem cells (BMSCs) impairs bone tissue regeneration, contributing to skeletal disorders. LncRNA NEAT1 is considered as a proliferative inhibitory role during cellular senescence, but the relevant mechanisms remain insufficient. This study aims to elucidate how NEAT1 regulates mitotic proteins during BMSCs aging.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Hepatology, Center for Pathogen Biology and Infectious Diseases, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin, China.
The intricate link between cholesterol metabolism and host immune responses is well recognized, but the specific mechanisms by which cholesterol biosynthesis influences hepatitis B virus (HBV) replication remain unclear. In this study, we show that SREBP2, a key regulator of cholesterol metabolism, inhibits HBV replication by interacting directly with the HBx protein, thereby preventing its nuclear translocation. We also found that inhibiting the ER-to-Golgi transport of the SCAP-SREBP2 complex or blocking SREBP2 maturation significantly enhances HBV suppression.
View Article and Find Full Text PDFIndian J Nephrol
July 2024
Department of Nephrology, Asian Institute of Nephrology and Urology, Dilsukhnagar Hyderabad, India.
Multiple myeloma (MM) represents a difficult-to-treat plasma cell malignancy and the second most common hematologic malignancy in adults, significantly impacting kidney function. The spectrum of kidney involvement in MM is broad, encompassing electrolyte imbalances, tubular injury, and even rare glomerular diseases. The evolution of MM treatment modalities has led to notable improvements in the long-term survival of patients experiencing kidney-related complications.
View Article and Find Full Text PDFAging Cell
January 2025
Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados, Ciudad de México, Mexico.
Hutchinson-Gilford progeria syndrome (HGPS) is a premature aging disease caused by progerin, a mutant variant of lamin A. Progerin anchors aberrantly to the nuclear envelope disrupting a plethora of cellular processes, which in turn elicits senescence. We previously showed that the chromosomal region maintenance 1 (CRM1)-driven nuclear export pathway is abnormally enhanced in patient-derived fibroblasts, due to overexpression of CRM1.
View Article and Find Full Text PDFT-cell prolymphocytic leukemia (T-PLL) is an aggressive lymphoid malignancy with limited treatment options. To discover new treatment targets for T-PLL, we performed high-throughput drug sensitivity screening on 30 primary patient samples ex-vivo. After screening over 2'800 unique compounds, we found T-PLL to be more resistant to most drug classes, including chemotherapeutics, compared to other blood cancers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!