Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The crystal structures of two double mutants (F14N/V21T and F14N/V86T) of the signal transduction protein CheY have been determined to a resolution of 2.4 and 2.2 A, respectively. The structures were solved by molecular replacement and refined to final R values of 18.4 and 19.2%, respectively. Together with urea-denaturation experiments the structures have been used to analyse the effects of mutations where hydrophobic residues are replaced by residues capable of establishing hydrogen bonds. The large increase in stabilization (-12.1 kJ mol-1) of the mutation Phe14Asn arises from two factors: a reverse hydrophobic effect and the formation of a good N-cap at alpha-helix 1. In addition, a forward-backward hydrogen-bonding pattern, resembling an N-capping box and involving Asn14 and Arg18, has been found. The two Val to Thr mutations at the hydrophobic core have different thermodynamic effects: the mutation Val21Thr does not affect the stability of the protein while the mutation Val86Thr causes a small destabilization of 1.7 kJ mol-1. At site 21 a backward side chain-to-backbone hydrogen bond is formed inside alpha-helix 1 with the carbonyl O atom of the i - 4 residue without movement of the mutated side chain. The destabilizing effect of introducing a polar group in the core is efficiently compensated for by the formation of an extra hydrogen bond. At site 86 the new Ogamma atom escapes from the hydrophobic environment by a chi1 rotation into an adjacent hydrophilic cavity to form a new hydrogen bond. In this case the isosteric Val to Thr substitution is disruptive but the loss in stabilization energy is partly compensated by the formation of a hydrogen bond. The two crystal structures described in this work underline the significance of the hydrogen-bond component to protein stability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1107/s0907444997012158 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!