Colloidal Particles at Solid-Liquid Interfaces: Mechanisms of Desorption Kinetics.

J Colloid Interface Sci

Institute of Applied Physics, University of Bern, Sidlerstr. 5, Bern, CH-3012, Switzerland

Published: October 1998

We study the sorption of colloids on equally charged surfaces. Our focus is on the time scale from hours to weeks, where adsorption is not an irreversible process but interplays with (spontaneous) desorption. Using model calculations, we show how the desorption kinetics is influenced by readsorption, a potential barrier, a secondary potential minimum, local variation of the potential, and bond aging. In the experimental part we present results of in situ observation of the sorption kinetics of polystyrene latex particles onto a glass surface. Combining the evanescent field method with video microscopy, we were able to identify the particle arrival and departure times individually and therefrom determine the adhesion time distribution function. The nonexponentiality of this function can be explained by a gamma distribution of the potential depth at the binding sites as well as by logarithmic bond aging. Copyright 1998 Academic Press.

Download full-text PDF

Source
http://dx.doi.org/10.1006/jcis.1998.5636DOI Listing

Publication Analysis

Top Keywords

desorption kinetics
8
bond aging
8
colloidal particles
4
particles solid-liquid
4
solid-liquid interfaces
4
interfaces mechanisms
4
mechanisms desorption
4
kinetics study
4
study sorption
4
sorption colloids
4

Similar Publications

This work quantifies, through use of molecular dynamics (MD) simulations, the kinetic rates of physical surface processes occurring at a plasma-water interface. The probabilities of adsorption, absorption, desorption and scattering were computed for O, NO, NO, NO, OH, HO, HNO, HNO, and NO as they interact with the interface at three water temperatures: 298 K, 323 K, and 348 K. Species are categorised into the short-residence group (O, NO, NO, and NO) and the long-residence group (OH, HO, HNO, HNO, and NO) based on their mean surface residence time.

View Article and Find Full Text PDF

Evaluation of anion exchange resin for sorption of selenium (IV) from aqueous solutions.

BMC Chem

January 2025

Nuclear Chemistry Department, Hot Laboratories Center, Egyptian Atomic Energy Authority, P.O. 13759, Cairo, Egypt.

In this work, selenium (IV) ions were adsorbed from aqueous solutions by the strongly basic anion exchange resin Amberlite IRA-400. The morphology of the resin before and after Se(IV) sorption was investigated using different techniques such as energy dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). To determine the ideal sorption conditions, a batch approach was used to examine the variables affecting Se(IV) sorption performance, including pH, shaking time, adsorbent dosage, initial metal ion concentration, and temperature.

View Article and Find Full Text PDF

Developing Topics.

Alzheimers Dement

December 2024

Purdue, West Lafayette, IN, USA.

Background: PLCG2 is signal-transduction protein identified as a potential drug target for the treatment of Alzheimer's disease (AD). PLCG2 is regulated by stimulation of the TREM2 pathway in microglia, which results in phagocytosis of beta-amyloid. PLCG2 catalyzes the cleavage of PI(4,5)P2 into IP3 and diacylglycerol, resulting in increased cell motility, phagocytosis, and proliferation in microglia.

View Article and Find Full Text PDF

A novel silica-based material (SBM), synthesized from chemically-, thermally-, and mechanically-treated blast furnace slag (TBFS), was examined for its batch-mode lead adsorption capacity based on various parameters. Physicochemical examinations revealed that the formulation of the new SBM consisted mainly of silica, which represented 81.79% of its total composition.

View Article and Find Full Text PDF

This study presents the preparation, characterization, and application of a novel Multi-walled carbon nanotubes/TiO/chitosan (MWCNT/TiO/CS) nanocomposite, prepared using a hydrothermal method, for the removal of malachite green (MG) dye from aqueous solutions. Adsorption studies revealed optimal dye removal within 15 min of adsorption equilibrium time, with maximum removal efficiency of 98.53 % at pH 7.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!