Interaction of Hic-5, A senescence-related protein, with focal adhesion kinase.

J Biol Chem

Department of Cancer Immunology & AIDS, Dana-Faber Cancer Institute, Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA.

Published: October 1998

Hydrogen peroxide-inducible clone (Hic)-5 is induced during the senescent process in human fibroblasts, and the overexpression of Hic-5 induces a senescence-like phenotype. Structurally, Hic-5 and paxillin, a 68-kDa cytoskeletal protein, share homology such as the LD motifs in the N-terminal half and the LIM domains in the C-terminal half. Here we show that Hic-5 binds to focal adhesion kinase (FAK) by its N-terminal domain, and is localized to focal adhesions by its C-terminal LIM domains. However, Hic-5 is not tyrosine phosphorylated either by the coexpressed FAK in COS cells or by integrin stimulation in 293T cells. Furthermore, overexpression of Hic-5 results in a decreased tyrosine phosphorylation of paxillin. These findings suggest that putative functions of Hic-5 are the recruitment of FAK to focal adhesions and a competitive inhibition of tyrosine phosphorylation of paxillin.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.273.41.26516DOI Listing

Publication Analysis

Top Keywords

focal adhesion
8
adhesion kinase
8
overexpression hic-5
8
lim domains
8
focal adhesions
8
tyrosine phosphorylation
8
phosphorylation paxillin
8
hic-5
7
interaction hic-5
4
hic-5 senescence-related
4

Similar Publications

The quantity of cable conductors is a crucial parameter in cable manufacturing, and accurately detecting the number of conductors can effectively promote the digital transformation of the cable manufacturing industry. Challenges such as high density, adhesion, and knife mark interference in cable conductor images make intelligent detection of conductor quantity particularly difficult. To address these challenges, this study proposes the YOLO-cable model, which is an improvement made upon the YOLOv10 model.

View Article and Find Full Text PDF

Objective: Intrahepatic cholangiocarcinoma (iCCA) is a highly lethal hepatobiliary malignancy with an increasing incidence annually. Extensive research has elucidated the existence of a reciprocal interaction between platelets and cancer cells, which promotes tumor proliferation and metastasis. This study aims to investigate the function and mechanism underlying iCCA progression driven by the interplay between platelets and tumor cells, aiming to provide novel therapeutic strategies for iCCA.

View Article and Find Full Text PDF

LncRNA MALAT1 as a potential diagnostic and therapeutic target in kidney diseases.

Pathol Res Pract

December 2024

Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India. Electronic address:

Long non-coding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript1 (MALAT1) has emerged as a crucial biomarker and therapeutic target for kidney diseases, including acute kidney injury (AKI), chronic kidney disease (CKD), diabetic kidney disease (DKD), lupus nephritis (LN), and renal cell carcinoma (RCC). LncRNAs are non-coding RNAs that have more than 200 nucleotides that play a crucial role in gene regulation at the post-translational stage, transcriptional, and epigenetic levels. LncRNA MALAT1 regulates gene expression and modulates cellular functions such as proliferation, inflammation, apoptosis, and fibrosis, which are key pathophysiology of kidney diseases.

View Article and Find Full Text PDF

The native extracellular matrix is continuously remodeled to form complex interconnected network structures that reversibly regulate stem cell behaviors. Both regulation and understanding of its intricate dynamicity can help to modulate numerous cell behaviors. However, neither of these has yet been achieved due to the lack of designing and modeling such complex structures with dynamic controllability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!