Objective: To review the results of observations of cytologic samples performed in our laboratory by light microscopy (LM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) performed in succession (LM-SEM-TEM examination) using the same cytologic sample and to assess the diagnostic value of this method of successive examination.
Study Design: Using a previously reported method of LM-SEM-TEM sample preparation and observation, we analyzed 201 cytologic specimens over a seven-year period (1986-1993) and investigated whether the histologic origin and malignancy can be estimated from SEM and TEM findings on the cells.
Results: Observations of many cytologic samples over a seven-year period (by LM, SEM and TEM) showed that several basic interpretations of cellular ultrastructure are possible. In cases where cell identification was difficult by LM, electron microscopic findings were sometimes useful for determining the biologic characteristics of cells and for estimating their tissue origin. Electron microscopic findings also provided important information for cytodiagnosis.
Conclusion: SEM and/or TEM findings are useful for determining the morphologic (including biologic) characteristics of cells in cases where they cannot be determined by LM. With the accumulation of data on electron microscopic examination of cytologic samples, it is expected that in the future, electron microscopy will continue to provide new information that can be used to improve the accuracy of cytodiagnosis by LM.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000332095 | DOI Listing |
Sci Rep
January 2025
Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
Hydroxyapatite (HA) is an important constituent of natural bone. The properties of HA can be enhanced with the help of various ionic substitutions in the crystal lattice of HA. Iron (Fe) is a vital element present in bones and teeth.
View Article and Find Full Text PDFUltramicroscopy
January 2025
Mechanical Engineering, University of Michigan, USA.
The objective of this work was to explore the capabilities of a field emission gun scanning electron microscope (FEG-SEM) equipped with a transmission scanning electron detector (TSEM) and energy dispersive spectroscopy (EDS) to identify nanoscale chemical heterogeneities in a gas atomization reaction synthesis (GARS) steel sample. The results of this analysis were compared to the same study conducted with scanning transmission electron microscopy (STEM) with EDS mapping. TSEM-EDS was performed using the standard spectral analysis approach, i.
View Article and Find Full Text PDFTalanta
January 2025
Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, C/ Julián Clavería 8, 33006, Oviedo, Spain; Health Research Institute of the Principality of Asturias (ISPA), Avda. Hospital Universitario s/n, 33011, Oviedo, Spain. Electronic address:
The use of inductively coupled plasma mass spectrometry in single particle mode (SP-ICP-MS) for the characterization of micro and nanostructured materials is a growing field of research. In this work, the possibility of expanding the boundaries to anisotropic structures including solid Pt-nanorods and hollowed FeO-nanotubes is presented. The obtained structures are evaluated by scanning electron microscopy (SEM), high-resolution electron microscopy (HR-TEM) and SP-ICP-MS techniques.
View Article and Find Full Text PDFVirchows Arch
January 2025
Department of Pathology, Stanford Medical Center, 300 Pasteur Drive, Stanford, CA, 94305, USA.
Beyond the more common TFE3 fusion partners PRCC, ASPSCR1, and SFPQ, additional less common fusion partners of TFE3-rearranged renal cell carcinoma (RCC) have been described. Herein, we present an example of TFE3-rearranged renal cell carcinoma harboring fusion partner MAPK1IP1L, a rare rearrangement with only one other reported tumor found in the literature. The currently reported TFE3-rearranged RCC demonstrates unique histological features compared to the previously reported tumor including dense eosinophilic cytoplasm and nuclear pseudoinclusions (corroborated by electron microscopic evaluation), with features not typically seen in other TFE3-rearranged RCCs.
View Article and Find Full Text PDFViruses
January 2025
Laboratory of Infectious Diseases, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea.
Self-assembling ferritin nanoparticle technology is a widely used vaccine development platform for enhancing the efficacy of subunit vaccines by displaying multiple antigens on nanocages. The dengue virus (DENV) envelope domain III (EDIII) protein, the most promising antigen for DENV, has been applied in vaccine development, and it is essential to evaluate the relative immunogenicity of the EDIII protein and EDIII-conjugated ferritin to show the efficiency of the ferritin delivery system compared with EDIII. In this study, we optimized the conditions for the expression of the EDIII protein in , protein purification, and refolding, and these optimization techniques were applied for the purification of EDIII ferritin nanoparticles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!