We here show that anergic T cells are active mediators of T cell suppression. In co-culture experiments, we found that anergic T cells, derived from established rat T cell clones and rendered anergic via T cell presentation of the specific antigen (Ag), were active inhibitors of T cell responses. Anergic T cells inhibited not only the responses of T cells with the same Ag specificity as the anergic T cells, but were also capable of efficiently inhibiting polyclonal T cell responses directed to other epitopes. This suppression required close cell-cell contact between antigen-presenting cells (APC), anergic T cells and responder T cells, and only occurred when the epitope recognized by the anergic T cell was present. The suppression was not caused by passive competition for ligands on the APC surface, IL-2 consumption, or cytolysis, and was not mediated by soluble factors derived from anergic T cells that were stimulated with their specific Ag. When responder T cells were added 24 h after co-culturing anergic cells in the presence of Ag and APC, T cell responses were still suppressed, indicating that the suppressive effect was persistently present. However, anergic T cells were not able to suppress responder T cells that had already received a full activation signal. We propose that suppression by anergic T cells is mediated via the APC, either through modulation of the T cell-activating capacity of the APC (APC/T cell interaction), or by inhibition of T cells recognizing their ligand in close proximity on the same APC (T/T cell interaction).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/(SICI)1521-4141(199809)28:09<2902::AID-IMMU2902>3.0.CO;2-B | DOI Listing |
World J Diabetes
January 2025
Department of Endocrinology and Metabolism, Lancashire Teaching Hospitals NHS Trust, Preston PR2 9HT, United Kingdom.
Use of immunomodulating agents to prevent the progression of autoimmune β-cell damage leading to type 1 diabetes mellitus (T1DM) is an interesting area for research. These include non-specific anti-inflammatory agents, immunologic vaccination and anti-inflammatory agents targeting specific immune cells or cytokines. Teplizumab is an anti-CD3-molecule that binds to and leads to the disappearance of the CD3/TCR complex and rendering the T cell anergic to its target antigen.
View Article and Find Full Text PDFCancers (Basel)
December 2024
Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
Reduced expression of adhesion molecules in tumor vasculature can limit infiltration of effector T cells. To improve T cell adhesion to tumor endothelial cell (EC) antigens and enhance transendothelial migration, we developed bispecific, T-cell engaging antibodies (bsAb) that activate T cells after cross-linking with EC cell surface antigens. Recombinant T-cell stimulatory anti-VEGFR2-anti-CD3 and costimulatory anti-TIE2-anti-CD28 or anti-PD-L1-anti-CD28 bsAb were engineered and expressed.
View Article and Find Full Text PDFMHC-I proteins present epitopic peptides to CD8+ T cells to elicit multifaceted adaptive immune responses. The affinity and avidity of interactions between peptide-MHC molecules and T-cell receptors (TCR) are fundamental parameters that contribute to the induction of activated or anergic T cell states. Here, we present a loadable system, VLP-Open HLA, featuring a virus-like particle (VLP) that can accommodate up to 60 loadable HLA (HLA - human leukocyte antigen) molecules.
View Article and Find Full Text PDFTissue Eng Regen Med
January 2025
Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA.
Background: Type 1 diabetes (T1D) results in autoreactive T cells chronically destroying pancreatic islets. This often results in irreplaceable loss of insulin-producing beta cells. To reverse course, a combinatorial strategy of employing glucose-responsive insulin restoration coupled with inhibiting autoreactive immune responses is required.
View Article and Find Full Text PDFSemin Cancer Biol
November 2024
Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece; Ninewells Hospital and Medical School, University of Dundee, Dundee DD19SY, UK; Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece; Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M20 4GJ, UK. Electronic address:
Senescence is an inherent cellular mechanism triggered as a response to stressful insults. It associates with several aspects of cancer progression and therapy. Senescent cells constitute a highly heterogeneous cellular population and their identification can be very challenging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!