The prevalence of insulin resistance in the most common metabolic disorders is still an undefined issue. We assessed the prevalence rates of insulin resistance in subjects with impaired glucose tolerance (IGT), NIDDM, dyslipidemia, hyperuricemia, and hypertension as identified within the frame of the Bruneck Study. The study comprised an age- and sex-stratified random sample of the general population (n = 888; aged 40-79 years). Insulin resistance was estimated by homeostasis model assessment (HOMA(IR)), preliminarily validated against a euglycemic-hyperinsulinemic clamp in 85 subjects. The lower limit of the top quintile of HOMA(IR) distribution (i.e., 2.77) in nonobese subjects with no metabolic disorders (n = 225) was chosen as the threshold for insulin resistance. The prevalence of insulin resistance was 65.9% in IGT subjects, 83.9% in NIDDM subjects, 53.5% in hypercholesterolemia subjects, 84.2% in hypertriglyceridemia subjects, 88.1% in subjects with low HDL cholesterol, 62.8% in hyperuricemia subjects, and 58.0% in hypertension subjects. The prevalence of insulin resistance in subjects with the combination of glucose intolerance (IGT or NIDDM), dyslipidemia (hypercholesterolemia and/or hypertriglyceridemia and/or low HDL cholesterol), hyperuricemia, and hypertension (n = 21) was 95.2%. In isolated hypercholesterolemia, hypertension, or hyperuricemia, prevalence rates of insulin resistance were not higher than that in nonobese normal subjects. An appreciable number of subjects (n = 85, 9.6% of the whole population) was insulin resistant but free of IGT, NIDDM, dyslipidemia, hyperuricemia, and hypertension. These results from a population-based study documented that 1) in hypertriglyceridemia and a low HDL cholesterol state, insulin resistance is as common as in NIDDM, whereas it is less frequent in hypercholesterolemia, hyperuricemia, and hypertension; 2) the vast majority of subjects with multiple metabolic disorders are insulin resistant; 3) in isolated hypercholesterolemia, hyperuricemia, or hypertension, insulin resistance is not more frequent than can be expected by chance alone; and 4) in the general population, insulin resistance can be found even in the absence of any major metabolic disorders.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2337/diabetes.47.10.1643 | DOI Listing |
Background: The association between serum uric acid (SUA) and dyslipidaemia is still unclear in patients with type 2 diabetes mellitus (T2DM). This study aimed to examine the association between SUA and dyslipidaemia and to explore whether there is an optimal SUA level corresponding to the lower risk of suffering from dyslipidaemia.
Research Design And Methods: This cross-sectional study included 1036 inpatients with T2DM and the clinical data were extracted from the hospital medical records.
Trends Endocrinol Metab
January 2025
School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia.
With the rising prevalence of type 2 diabetes mellitus (T2DM) and obesity, several previously under-recognised complications associated with T2DM are becoming more evident. The most common of these emerging complications are metabolic dysfunction-associated steatotic liver disease (MASLD), cancer, dementia, sarcopenia, and frailty, as well as other conditions involving the lung, heart, and intestinal tract. Likely causative factors are chronic inflammation and insulin resistance, whereas blood glucose levels appear to play a lesser role.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Hebei Province, Shijiazhuang, 050017, PR China. Electronic address:
Perfluorooctane sulfonate (PFOS), a prevalent perfluoroalkyl substance (PFAS), is widely present in various environmental media, animals, and even human bodies. It primarily accumulates in the liver, contributing to the disruption of hepatic metabolic homeostasis. However, the precise mechanism underlying PFOS-induced hepatic glucolipid metabolic disorders remains elusive.
View Article and Find Full Text PDFBiomed Pharmacother
January 2025
Laboratory of Clinical and Experimental Physiopathology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil.
Non-alcoholic fatty liver disease (NAFLD) is a common hepatic manifestation of metabolic syndrome affecting 20-30 % of the adult population worldwide. This disease, which includes simple steatosis and non-alcoholic steatohepatitis, poses a significant risk for cardiovascular and metabolic diseases. Lifestyle modifications are crucial in the treatment of NAFLD; however, patient adherence remains challenging.
View Article and Find Full Text PDFNeurosci Bull
January 2025
Center for Translational Neuromedicine and Neurology, School of Life Sciences, Institute for Brain Sciences Research, Henan University, Huaihe Hospital of Henan University, Kaifeng, 475004, China.
Parkinson's disease (PD), a chronic and common neurodegenerative disease, is characterized by the progressive loss of dopaminergic neurons in the dense part of the substantia nigra and abnormal aggregation of alpha-synuclein. Type 2 diabetes mellitus (T2DM) is a metabolic disease characterized by chronic insulin resistance and deficiency in insulin secretion. Extensive evidence has confirmed shared pathogenic mechanisms underlying PD and T2DM, such as oxidative stress caused by insulin resistance, mitochondrial dysfunction, inflammation, and disorders of energy metabolism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!