We have previously shown that somatostatin can either enhance or decrease AMPA/kainate receptor-mediated responses to glutamate in mouse-dissociated hypothalamic neurones grown in vitro. To investigate whether this effect is due to differential activation of somatostatin (SRIF) receptor subtypes, we compared modulation of the response to glutamate by SRIF with that induced by CH-275 and octreotide, two selective agonists of sst1 and sst2/sst5 receptors, respectively. Somatostatin either significantly decreased (49%) or increased (30%) peak currents induced by glutamate, and was ineffective in the remaining cells. Only the decreased response was obtained with octreotide, whereas only increased responses were elicited by CH-275 (47 and 35% of the tested cells, respectively). Mean amplitude variations under somatostatin or octreotide on the one hand, and under somatostatin or CH-275 on the other hand, were equivalent. Pertussis toxin pretreatment significantly decreased the number of cells inhibited by somatostatin or octreotide, but had no effect on the frequency of neurones showing increased sensitivity to glutamate during somatostatin or CH-275 application. About half of the neurones tested by single cell reverse transcriptase polymerase chain reaction (RT-PCR) expressed only one sst receptor (sst1 in 26% and sst2 in 22% of studied cells). Out of the remaining neurones, 34% displayed neither sst1 nor sst2 mRNAs, whereas 18% showed a simultaneous expression of both mRNA subtypes. Expression of sst1 or sst2 mRNA subtypes matched totally with the effects of somatostatin on sensitivity to glutamate in 79% of the neurones processed for PCR after recordings. These data show that pertussis toxin-insensitive activation of the sst1 receptor subtype mediates somatostatin-induced increase in sensitivity to glutamate, whereas decrease in the response to glutamate is linked to pertussis toxin-sensitive activation of the sst2 receptor subtype.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1046/j.1460-9568.1998.00041.x | DOI Listing |
Cancers (Basel)
October 2024
Department of Histology and Embryology, Poznan University of Medical Sciences, Swiecicki Street 6, 60-781 Poznan, Poland.
Background/objectives: Colorectal cancer (CRC) is one of the most common human malignancies worldwide. The somatotropin-releasing inhibitory factor/somatostatin (SRIF/SST) acts through activation of five membrane receptors (SSTRs, SST1-5). The diagnostic and prognostic role of these peptides in sporadic CRC remains unclear.
View Article and Find Full Text PDFBrain Pathol
January 2025
Neuropathology and Molecular Genetics Laboratory, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil.
Animals (Basel)
February 2024
Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand.
We aimed to evaluate the effects of sperm concentration (150-250 × 10 spz/dose) and insemination frequency (once, twice, and thrice weekly) on fertility and sperm storage tubule (SST) characteristics. The SSTs were classified into five categories: namely, SSTs having an unscorable (SST1), empty (SST2), low (SST3), medium (SST4), and high (SST5) sperm count after insemination. The results showed that only insemination frequency affected the fertility rate ( < 0.
View Article and Find Full Text PDFProg Mol Biol Transl Sci
February 2023
Université Paris Cité, NeuroDiderot, Inserm UMR, Paris, France. Electronic address:
Somatostatin (SRIF) is a neuropeptide that acts as an important regulator of both endocrine and exocrine secretion and modulates neurotransmission in the central nervous system (CNS). SRIF also regulates cell proliferation in normal tissues and tumors. The physiological actions of SRIF are mediated by a family of five G protein-coupled receptors, called somatostatin receptor (SST) SST, SST, SST, SST, SST.
View Article and Find Full Text PDFACS Med Chem Lett
January 2023
Crinetics Pharmaceuticals, Inc., 10222 Barnes Canyon Road, Building #2, San Diego, California 92121, United States.
The discovery of a novel 4-(4-aminopiperidinyl)-3,6-diarylquinoline series of potent SST2 agonists is described. This class of molecules exhibit excellent selectivity over SST1, SST3, SST4, and SST5 receptors. The compound 3-[4-(4-aminopiperidin-1-yl)-3-(3,5-difluorophenyl)quinolin-6-yl]-2-hydroxybenzonitrile (, paltusotine, formerly known as CRN00808) showed no direct inhibition of major cytochrome P450 enzymes or the hERG ion channel and had sufficient exposure in rats and excellent exposure in dogs upon oral dosing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!