Reversible impairment of long-term potentiation in transgenic Cu/Zn-SOD mice.

Eur J Neurosci

Department of Neurobiology, The Weizmann Institute, Rehovot, Israel.

Published: February 1998

Copper/zinc superoxide dismutase (CuZn-SOD) is a key enzyme in the metabolism of oxygen free radicals. The gene encoding CuZn-SOD resides on human chromosome 21 and is overexpressed in Down syndrome (DS) patients. Overexpression of CuZn-SOD in transgenic (Tg) mice and cultured cells creates chronic oxidative stress leading to enhanced susceptibility to degeneration and apoptotic cell death. We have now found that three lines of Tg-CuZn-SOD mice, one of which also overexpresses S100beta, a glial calcium binding protein, are deficient in spatial memory. Furthermore, hippocampal slices taken from these mice have an apparently normal synaptic physiology, but are impaired in the ability to express long-term potentiation (LTP). This effect on hippocampal LTP was abrogated by treatment of slices with the H2O2 scavenger catalase or the antioxidant N-t-butyl-phenylnitrone (BPN). It is proposed that elevated CuZnSOD causes an increase in tetanic stimulation-evoked formation of H2O2 which leads to diminished LTP and cognitive deficits in these mice.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1460-9568.1998.00058.xDOI Listing

Publication Analysis

Top Keywords

long-term potentiation
8
mice
5
reversible impairment
4
impairment long-term
4
potentiation transgenic
4
transgenic cu/zn-sod
4
cu/zn-sod mice
4
mice copper/zinc
4
copper/zinc superoxide
4
superoxide dismutase
4

Similar Publications

Inactivation of CaV1 and CaV2 channels.

J Gen Physiol

March 2025

Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA.

Voltage-gated Ca2+ channels (VGCCs) are highly expressed throughout numerous biological systems and play critical roles in synaptic transmission, cardiac excitation, and muscle contraction. To perform these various functions, VGCCs are highly regulated. Inactivation comprises a critical mechanism controlling the entry of Ca2+ through these channels and constitutes an important means to regulate cellular excitability, shape action potentials, control intracellular Ca2+ levels, and contribute to long-term potentiation and depression.

View Article and Find Full Text PDF

Background: Obsessive-compulsive disorder (OCD) is a complex condition marked by persistent distressing thoughts and repetitive behaviours. Despite its prevalence, the mechanisms behind OCD remain elusive, and current treatments are limited. This protocol outlines an investigative study for individuals with OCD, exploring the potential of psilocybin to improve key components of cognition implicated in the disorder.

View Article and Find Full Text PDF

The development of disease-modifying therapeutics for Alzheimer's disease remains challenging due to the complex pathology and the presence of the blood-brain barrier. Previously we have described the investigation of a brain-penetrating multifunctional bioreactive nanoparticle system capable of remodeling the hypoxic and inflammatory brain microenvironment and reducing beta-amyloid plaques improving cognitive function in a mouse model of Alzheimer's disease. Despite the linkage of hypoxia and inflammation to metabolic alteration, the effects of this system on modulating cerebral glucose metabolism, mitochondrial activity and synaptic function remained to be elucidated.

View Article and Find Full Text PDF

Tau oligomers impair memory and synaptic plasticity through the cellular prion protein.

Acta Neuropathol Commun

January 2025

Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy.

Deposition of abnormally phosphorylated tau aggregates is a central event leading to neuronal dysfunction and death in Alzheimer's disease (AD) and other tauopathies. Among tau aggregates, oligomers (TauOs) are considered the most toxic. AD brains show significant increase in TauOs compared to healthy controls, their concentration correlating with the severity of cognitive deficits and disease progression.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder characterized by cognitive decline. Despite extensive research, therapeutic options remain limited. Varenicline, an αβ nicotinic acetylcholine receptor agonist, shows promise in enhancing cognitive function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!