Advanced glycation end products induce crosslinking of collagen in vitro.

Biochim Biophys Acta

Department of Biochemistry, Central Leather Research Institute, Adyar, Chennai, India.

Published: September 1998

We have investigated the effect of advanced glycation end products (AGEs) on the crosslinking of collagen. The potential pathological significance of AGEs and the altered metabolism of ascorbic acid (ASA) in diabetes have prompted us to investigate the role of ASA in the crosslinking and advanced glycation of collagen. Rat tail tendons were incubated with ASA and dehydroascorbic acid (DHA) under physiological conditions of temperature and pH, and the crosslinking and the level of AGEs were analyzed. Analysis of crosslinking was conducted by pepsin solubility and cyanogen bromide digestion. Level of AGEs was estimated by enzyme-linked immunosorbent assay (ELISA) using antibodies raised against AGE-ribonuclease. It was noted that ASA and DHA induced crosslinking of collagen and stimulated the formation of AGEs. It was also noted that these pathways were dependent on oxidative conditions. Similarly incubation of collagen with AGEs, prepared by the in vitro incubation of bovine serum albumin (BSA) with glucose, also resulted in increased crosslinking. The extent of crosslinking was dependent on the duration of incubation. The novel finding of this study, which is in contrast to the earlier reports on glucose-induced crosslinking of collagen, was that AGEs-induced crosslinking of collagen was not inhibited by radical scavengers and the metal chelator. EDTA, whereas glucose-induced crosslinking of collagen was almost completely prevented by free radical scavengers. The increased fluorescence intensity observed in collagen incubated with AGEs was also not prevented by radical scavengers. Estimation of AGEs by ELISA revealed an increased accumulation of AGEs in collagen incubated with AGE-BSA. The inhibitory effect of aminoguanidine and aspirin on AGEs-induced modification of collagen, strongly suggests that the amino-carbonyl interaction between AGEs and collagen may play a key role in the crosslinking process. The results obtained in this study indicate that soluble AGEs can directly induce crosslinking of collagen and this process is independent of oxidative conditions. From these results it may be hypothesized that glucose, under oxidative conditions, reacts with proteins to form potentially reactive end products called AGEs. These AGEs, once formed, could induce crosslinking of collagen even in the absence of both glucose and oxygen.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0925-4439(98)00043-xDOI Listing

Publication Analysis

Top Keywords

crosslinking collagen
32
crosslinking
14
collagen
14
ages
13
advanced glycation
12
induce crosslinking
12
oxidative conditions
12
radical scavengers
12
glycation products
8
level ages
8

Similar Publications

The healing of bacteria-infected wounds has long posed a significant clinical challenge. Traditional hydrogel wound dressings often lack self-healing properties and effective antibacterial characteristics, making wound healing difficult. In this study, a bioactive small molecule cross-linking agent 4-FPBA/Lys/4-FPBA (FLF) composed of 4-formylphenylboronic acid (4-FPBA) and lysine (Lys) was utilized to cross-link guar gum (GG) and a tannic acid/iron (TA/Fe) chelate through multiple dynamic bonds, leading to the formation of a novel self-healing hydrogel dressing GG-FLF/TA/Fe.

View Article and Find Full Text PDF

High drug resistance remains a challenge for chemotherapy against hepatocellular carcinoma (HCC). Combining chemotherapeutic agents with microRNA (miRNA), which simultaneously regulates multiple pathways, offers a promising approach to improve therapeutic efficacy against HCC. Although cationic amphiphilic copolymers have been used to co-deliver these agents, their effectiveness is often limited by low co-encapsulation efficiency and inherent cationic toxicity.

View Article and Find Full Text PDF

Background: Regenerating periodontal ligament (PDL) tissue is a vital challenge in dentistry that aims to restore periodontal function and aesthetics. This study explores a tissue engineering strategy that combines polycaprolactone (PCL)/collagen/cellulose acetate electrospun scaffolds with collagen hydrogels to deliver curcumin-loaded ZIF-8 nanoparticles fand periodontal ligament stem cells (PDLSCs).

Methods: Scaffolds were fabricated via electrospinningand collagen hydrogels incorporated PDLSCs and curcumin-loaded ZIF-8 nanoparticles (CURZIF-8) were developed using cross-linking.

View Article and Find Full Text PDF

Reproducing the microstructure of the natural cornea remains a significant challenge in achieving the mechanical and biological functionality of artificial corneas. Therefore, the development of cascade structures that mimic the natural extracellular matrix (ECM), achieving both macro-stability and micro-structure, is of critical importance. This study proposes a novel, efficient, and general photo-functionalization strategy for modifying natural biomaterials.

View Article and Find Full Text PDF

The process of regenerating bone injuries in diabetic presents significant challenges because lysine oxidase (LOX), a key catalytic enzyme for collagen cross-linking, is inhibited in hyperglycemia. The supplementation of LOX is constrained by inadequate sources and diminished enzymatic activity, necessitating the development of effective alternatives for enhancing bone regeneration in diabetes. Herein, we reported a lysyl oxidase nanozyme (LON), derived from the catalytic domain of LOX.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!