Cytochrome c heme lyase activity of yeast mitochondria.

J Biol Chem

Laboratory for Molecular Biology, Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois 60607, USA.

Published: October 1998

A highly efficient in vitro system was established for measuring by high performance liquid chromatography the formation of holocytochrome c by yeast mitochondria. Holocytochrome c formation required reducing agents, of which dithiothreitol was the most effective. With biosynthetically made, pure Drosophila melanogaster apocytochrome c and Saccharomyces cerevisiae mitochondria, the activity of cytochrome c heme lyase amounted to about 800 fmol min-1 mg-1 mitochondrial protein. The kinetics were typical Michaelis-Menten (Km approximately 1 nM), as were those of mitoplasts with broken outer membranes (Km approximately 3 nM). As tested with mitoplasts, holocytochromes c from a range of species were found to be competitive inhibitors of heme lyase at physiological concentrations, providing a mechanism for controlling this concentration in vivo. Apocytochrome c associated with yeast mitochondria in two phases of Kd approximately 2 x 10(-10) and 10(-8) M, respectively, whereas mitoplasts had lost the high affinity binding. A site-directed mutant of apocytochrome c (lysines 5, 7, and 8 replaced by glutamine, glutamic acid, and asparagine) was found to be converted to holocytochrome c (Km approximately 3.3 nM; maximal activity unchanged), even though the mutations completely eliminated the high affinity binding. Thus, the high affinity binding of apocytochrome c to mitochondria is not directly related to holocytochrome c formation.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.273.40.25695DOI Listing

Publication Analysis

Top Keywords

heme lyase
12
yeast mitochondria
12
high affinity
12
affinity binding
12
cytochrome heme
8
holocytochrome formation
8
mitochondria
5
lyase activity
4
activity yeast
4
mitochondria highly
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!