Purpose: To determine the relation between the incidence of radiation pneumonitis and the three-dimensional dose distribution in the lung.
Methods And Materials: In five institutions, the incidence of radiation pneumonitis was evaluated in 540 patients. The patients were divided into two groups: a Lung group, consisting of 399 patients with lung cancer and 1 esophagus cancer patient and a Lymph./Breast group with 78 patients treated for malignant lymphoma, 59 for breast cancer, and 3 for other tumor types. The dose per fraction varied between 1.0 and 2.7 Gy and the prescribed total dose between 20 and 92 Gy. Three-dimensional dose calculations were performed with tissue density inhomogeneity correction. The physical dose distribution was converted into the biologically equivalent dose distribution given in fractions of 2 Gy, the normalized total dose (NTD) distribution, by using the linear quadratic model with an alpha/beta ratio of 2.5 and 3.0 Gy. Dose-volume histograms (DVHs) were calculated considering both lungs as one organ and from these DVHs the mean (biological) lung dose, NTDmean, was obtained. Radiation pneumonitis was scored as a complication when the pneumonitis grade was grade 2 (steroids needed for medical treatment) or higher. For statistical analysis the conventional normal tissue complication probability (NTCP) model of Lyman (with n=1) was applied along with an institutional-dependent offset parameter to account for systematic differences in scoring patients at different institutions.
Results: The mean lung dose, NTDmean, ranged from 0 to 34 Gy and 73 of the 540 patients experienced pneumonitis, grade 2 or higher. In all centers, an increasing pneumonitis rate was observed with increasing NTDmean. The data were fitted to the Lyman model with NTD50=31.8 Gy and m=0.43, assuming that for all patients the same parameter values could be used. However, in the low dose range at an NTDmean between 4 and 16 Gy, the observed pneumonitis incidence in the Lung group (10%) was significantly (p=0.02) higher than in the Lymph./Breast group (1.4%). Moreover, between the Lung groups of different institutions, also significant (p=0.04) differences were present: for centers 2, 3, and 4, the pneumonitis incidence was about 13%, whereas for center 5 only 3%. Explicitly accounting for these differences by adding center-dependent offset values for the Lung group, improved the data fit significantly (p < 10(-5)) with NTD50=30.5+/-1.4 Gy and m=0.30+/-0.02 (+/-1 SE) for all patients, and an offset of 0-11% for the Lung group, depending on the center.
Conclusions: The mean lung dose, NTDmean, is relatively easy to calculate, and is a useful predictor of the risk of radiation pneumonitis. The observed dose-effect relation between the NTDmean and the incidence of radiation pneumonitis, based on a large clinical data set, might be of value in dose-escalating studies for lung cancer. The validity of the obtained dose-effect relation will have to be tested in future studies, regarding the influence of confounding factors and dose distributions different from the ones in this study.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0360-3016(98)00196-5 | DOI Listing |
Nucl Med Rev Cent East Eur
December 2024
Department of Radiology & Nuclear Medicine, Sultan Qaboos Comprehensive Cancer Care, and Research Center, Muscat, Oman.
Background: In radioembolization therapy for hepatic malignancies, the accurate estimation of lung shunt fraction (LSF) is crucial to minimize the risk of radiation-induced pneumonitis and fibrosis due to hepatopulmonary shunting of yttrium-90 (90Y)-microspheres. This study aimed to compare the accuracy and precision of LSF estimation using technetium-99m macroaggregated albumin single photon emission computed tomography ([99mTc]Tc-MAA SPECT) LSF, [99mTc]Tc-MAA planar LSF, and 90Y PET LSF in patients undergoing 90Y-radioembolization.
Material And Methods: A retrospective study was conducted involving 15 patients diagnosed with hepatocellular carcinoma (HCC) or liver metastases and planned to undergo transarterial radioembolization with 90Y SirSpheres after multidisplinary team discussion.
Front Immunol
December 2024
Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China.
Background: Patients receiving chest radiation therapy, or exposed to high radiation levels due to accidental nuclear leakage are at risk of radiation-induced lung injury (RILI). In innate immunity, macrophages not only exhibit certain radiation tolerance but also play an important regulatory role in the whole pathological process. Nervonic acid (NA), a long-chain unsaturated fatty acid found in nerve tissue, plays a pivotal role in maintaining normal tissue growth and repair.
View Article and Find Full Text PDFUnresectable stage III NSCLC is now treated with chemoradiation (CRT) followed by immune checkpoint inhibitors (ICI). Pneumonitis, a common CRT complication, has heightened risk with ICI, potentially causing severe outcomes. Currently, there are no biomarkers to predict pneumonitis risk or differentiate between radiation-induced pneumonitis (RTP) and ICI-induced pneumonitis (IIP).
View Article and Find Full Text PDFAdv Radiat Oncol
February 2025
Departments of Radiation Physics.
Purpose: To evaluate the efficacy of prominent machine learning algorithms in predicting normal tissue complication probability using clinical data obtained from 2 distinct disease sites and to create a software tool that facilitates the automatic determination of the optimal algorithm to model any given labeled data set.
Methods And Materials: We obtained 3 sets of radiation toxicity data (478 patients) from our clinic: gastrointestinal toxicity, radiation pneumonitis, and radiation esophagitis. These data comprised clinicopathological and dosimetric information for patients diagnosed with non-small cell lung cancer and anal squamous cell carcinoma.
Front Oncol
December 2024
Department of Radiology, Huadong Hospital, Fudan University, Shanghai, China.
Background: This study aimed to develop and validate a multiregional radiomic-based composite model to predict symptomatic radiation pneumonitis (SRP) in non-small cell lung cancer (NSCLC) patients treated with stereotactic body radiation therapy (SBRT).
Materials And Methods: 189 patients from two institutions were allocated into training, internal validation and external testing cohorts. The associations between the SRP and clinic-dosimetric factors were analyzed using univariate and multivariate regression.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!