An evaluation of the cytochrome P450 induction potential of pantoprazole in primary human hepatocytes.

Chem Biol Interact

Drug Metabolism and Analytical Chemistry Research Laboratory, Daiichi Pharmaceutical, Tokyo, Japan.

Published: July 1998

Primary human hepatocytes contain a full complement of human drug-metabolizing enzymes and therefore represent a relevant experimental system for the evaluation of pharmacokinetic drug-drug interaction potential in human. In this study, the cytochrome P450 (CYP) induction potential of pantoprazole (PAN) was evaluated and compared to two other proton pump inhibitors (PPIs), omeprazole (OM) and lansoprazole (LAN). Primary human hepatocytes from three donors were studied. The hepatocytes were cultured for 3 days, followed by treatment for 3 days with the PPIs at 2, 5 and 10 microM. Two other known CYP inducers, 3-methylcholanthrene at 1 microM and rifampin at 50 microM, were also evaluated. Induction potentials of these chemicals for CYP1A and CYP3A were evaluated by isozyme activity and isozyme content. 7-Ethoxyresorufin-O-deethylase and testosterone 6beta-hydroxylase activities were used as endpoints for CYP1A and CYP3A, respectively. Isozyme protein contents of CYP1A and CYP3A were evaluated via Western blotting. The results showed that for CYP1A induction, the rank ordering in induction potential was consistently OM > LAN > PAN. CYP3A induction by the PPI's were observed in two of the three hepatocyte cultures, with no apparent differences in induction potency for the three compounds. Our results on CYP1A induction suggest that PAN has a lower drug-drug interaction potential than OM and LAN.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0009-2797(98)00031-3DOI Listing

Publication Analysis

Top Keywords

induction potential
12
primary human
12
human hepatocytes
12
cyp1a cyp3a
12
cytochrome p450
8
induction
8
potential pantoprazole
8
drug-drug interaction
8
interaction potential
8
cyp3a evaluated
8

Similar Publications

Adenomyosis is characterized by abnormal uterine bleeding, dysmenorrhea and subfertility. Increased expression of angiogenesis markers in adenomyosis presents a treatment opportunity and was studied in an adenomyosis mouse model. Mice were administered tamoxifen (1 mg/kg) on neonatal days 2-5.

View Article and Find Full Text PDF

Efficient and Rapid Generation of Neural Stem Cells by Direct Conversion Fibroblasts with Single microRNAs.

Stem Cells

January 2025

Medicine and Pharmacy Research Center, and Yantai Key Laboratory for Stem Cell Biology and Regenerative Medicine, Binzhou Medical University, 346 Guanhai Road, Yantai, Shandong 264003, China.

Neural stem cells (NSCs) have great potentials in the application of neurodegenerative disease therapy, drug screening, and disease modeling. However, current approaches for induced NSCs (iNSCs) generation from somatic cells are still slow and inefficient. Here we establish a rapid and efficient method of iNSCs generation from human and mouse fibroblasts by single microRNAs (miR-302a).

View Article and Find Full Text PDF

Background: Thyroid Hormones (THs) critically impact human cancer. Although endowed with both tumor-promoting and inhibiting effects in different cancer types, excess of THs has been linked to enhanced tumor growth and progression. Breast cancer depends on the interaction between bulk tumor cells and the surrounding microenvironment in which mesenchymal stem cells (MSCs) exert powerful pro-tumorigenic activities.

View Article and Find Full Text PDF

The increasing challenges posed by plant viral diseases demand innovative and sustainable management strategies to minimize agricultural losses. Exogenous double-stranded RNA (dsRNA)-mediated RNA interference (RNAi) represents a transformative approach to combat plant viral pathogens without the need for genetic transformation. This review explores the mechanisms underlying dsRNA-induced RNAi, highlighting its ability to silence specific viral genes through small interfering RNAs (siRNAs).

View Article and Find Full Text PDF

Specific Immune Responses and Oncolytic Effects Induced by EBV LMP2A-Armed Modified Ankara-Vaccinia Virus Vectored Vaccines in Nasopharyngeal Cancer.

Pharmaceutics

January 2025

NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China.

Background: The Epstein-Barr virus (EBV) is intricately linked to a range of human malignancies, with EBV latent membrane protein 2A (LMP2A) emerging as a potential target antigen for immunotherapeutic strategies in the treatment of nasopharyngeal carcinoma (NPC).

Methods: The modified vaccinia virus Ankara (MVA) is universally used in vector vaccine research because of its excellent safety profile and highly efficient recombinant gene expression. Here, we constructed a novel MVA-LMP2A recombinant virus and investigated its specific immune response induction and oncolytic effect.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!