Quantification of metabolite or drug concentrations in living tissues requires determination of intra- and extracellular volumes. This study demonstrates how this can be achieved non-invasively by 31P magnetic resonance spectroscopy (MRS) employing dimethyl methylphosphonate (DMMP) as a marker of total water space, 3-aminopropylphosphonate (3-APP) as a marker of extracellular space and P and 3-APP as markers of intracellular pH (pH) and extracellular pH (pHe) respectively. The MRS measurements of the tumour volumes were validated by classic radiolabelling methods using 3H2O and [14C]inulin as markers of total and extracellular space respectively. The extracellular volume fraction measured by radiolabelling of RIF-1 tumours was 23 +/- 0.83% (mean +/- s.e.m. n = 9), not significantly different (P > 0.1) from that found by MRS (27 +/- 2.9%, n = 9, London, and 35 +/- 6.7, n = 14, Baltimore). In untreated RIF-1 tumours, pH was about 0.2 units higher than pHe (P < 0.01). 5-Fluorouracil (5FU) treatment (165 mg kg(-1)) caused no significant changes in either pHe or per cent extracellular volume. However significant increases in pH, 48 h after treatment (P < 0.01) correlated with decreased tumour size and improved bioenergetic status [NTP/inorganic phosphate (Pi) ratio]. This study shows the feasibility of an MR method (verified by a 'gold standard') for studying the effects of drug treatment on intra- and extracellular spaces and pH in solid tumours in vivo.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2063062PMC
http://dx.doi.org/10.1038/bjc.1998.548DOI Listing

Publication Analysis

Top Keywords

intra- extracellular
12
extracellular volume
12
rif-1 tumours
12
extracellular
8
31p magnetic
8
magnetic resonance
8
resonance spectroscopy
8
extracellular space
8
estimations intra-
4
volume 31p
4

Similar Publications

The discovery of the functioning of intra- and extracellular ion compartments and cell membranes' operation opened the possibility of extending Claude Bernard's theory to intracellular ions. In contrast, by underestimating the role of ions, many misconceptions have prevailed. The author points out that maintaining the constancy of carbon dioxide is especially important.

View Article and Find Full Text PDF

Often, the value of the whole biomass from fermentation processes is not exploited, as commercial interests are focused on the main product that is typically either accumulated within cells or secreted into the medium. One underutilized fraction of yeast cells is the cell wall that contains valuable polysaccharides, such as chitin, known for its biocompatibility and biodegradability, which are thought of as valuable properties in diverse industries. Therefore, the valorization of waste biomass from fermentation to coproduce chitin could significantly improve the overall profitability and sustainability of biomanufacturing processes.

View Article and Find Full Text PDF

Osteoarthritis, particularly temporomandibular joint (TMJ) osteoarthritis (OA), poses significant challenges in diagnosis and treatment. Recent studies suggest that nanomaterials hold considerable promise in treating TMJ-OA, showing validated efficacy in animal models. However, further research is required to ensure their long-term safety within the TMJ-OA environment.

View Article and Find Full Text PDF

Background: Mitochondrial dysfunction induces chondrocyte senescence, thereby precipitating articular cartilage (AC) degeneration in the pathogenesis of osteoarthritis (OA). Although the transfer of mitochondria from mesenchymal stem cells (MSCs) to host cells and their potential protective role have been demonstrated, whether MSCs can alleviate chondrocyte mitochondrial dysfunction or reverse OA progression remains unclear.

Methods: A mitochondrial tracer was used to investigate the transfer of mitochondria-rich extracellular vesicles (MEV) derived from the culture supernatant of human synovial fluid-derived mesenchymal stem cells (hSF-MSCs).

View Article and Find Full Text PDF

This study aimed to achieve two main objectives: first, to determine whether the virulence factors of symbiotic bacteria of entomopathogenic nematodes (EPNs) against insect hosts are cell-associated or secreted, and to shed light on the underlying mechanisms of pathogenicity; and second, to identify and evaluate the standalone pathogenicity of symbiotic bacteria associated with entomopathogenic nematodes against Tenebrio molitor. Three bacterial species, Xenorhabdus nematophila (A41, SC, A18 and SF), Photorhabdus kayaii, and P. thracensis, were isolated and characterized via phylogenetic analysis of 16S-rRNA and gyrB genes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!