During meningitis, the host produces a plethora of signaling agents as part of a coordinated defense mechanism against invading pathogens. Nitric oxide (NO) and prostaglandin E2 (PGE2) are two such inflammatory mediators produced in response to bacterial endotoxins. Disruption of the blood-brain barrier (BBB) is one of many pathophysiological consequences of meningitis. The present objective was to examine the time-course of NO and PGE2 production in relationship to BBB permeability alterations during experimentally-induced meningitis. Meningeal inflammation was elicited by intracisternal administration of the bacterial endotoxin, lipopolysaccharides (LPS; 200 microg), and NO, PGE2, and BBB integrity were monitored over the next 24 h. Meningeal NO production was assessed by headspace chemiluminescence; cerebrospinal fluid PGE2 was determined by enzyme-linked immunosorbent assay (ELISA) immunoassay; and BBB integrity was determined by the brain accumulation of 14C-sucrose. Similar time-course profiles for NO and PGE2 were observed, with a peak effect for both inflammatory mediators observed within 6-8 h after intracisternal LPS dosing. Statistically significant (p < 0.05) disruption of the BBB was observed in various brain regions. Strikingly similar temporal relationships were observed for NO and PGE2 production and BBB disruption. These results suggest the hypothesis that NO and PGE2 may act in conjunction to disrupt the BBB during experimental meningitis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0361-9230(98)00052-5 | DOI Listing |
Eur J Clin Invest
January 2025
Department of Surgical, Medical and Molecular Pathology and Critical Area, Laboratory of Biochemistry, University of Pisa, Pisa, Italy.
Sotatercept binds free activins by mimicking the extracellular domain of the activin receptor type IIA (ACTRIIA). Additional ligands are BMP/TGF-beta, GDF8, GDF11 and BMP10. The binding with activins leads to the inhibition of the signalling pathway and the deactivation of the bone morphogenic protein (BMP) receptor type 2.
View Article and Find Full Text PDFAnal Methods
November 2017
Agricultural and Biological Engineering Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA.
Nitric oxide (NO) is an important signaling molecule that is involved in stress response, homeostasis, host defense, and cell development. In most cells, NO levels are in the femtomolar to micromolar range, with extracellular concentrations being much lower. Thus, real time measurement of spatiotemporal NO dynamics near the surface of living cells/tissues is a major challenge.
View Article and Find Full Text PDFIr Vet J
January 2025
Animal and Poultry Production Division, Department of Animal and Poultry Breeding, Desert Research Center, Cairo, Egypt.
Brucellosis is a highly contagious zoonotic bacterial disease. It has considerable negative consequences on the animal production industry worldwide. The objective of this study was to investigate the genetic and molecular variations in Shami goat susceptible to Brucella infection.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Pesticide Chemistry, National Research Centre, Dokki, 12622, Giza, Egypt.
Chemoprevention is one of the accessible strategies for preventing, delaying or reversing cancer processing utilizing chemical intervention of carcinogenesis. NAD(P)H quinone oxidoreductase 1 (NQO1) is a xenobiotic metabolizing cytosolic enzyme/protein with important functional properties towards oxidation stress, supporting its ability in detoxification/chemoprotective role. A set of 3,5-diylidene-4-piperidones (as curcumin mimics) bearing alkyl sulfonyl group were synthesized with potential NQO1 induction properties.
View Article and Find Full Text PDFFree Radic Biol Med
January 2025
Department of Drug and Health Sciences, University of Catania, Catania, Italy; Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute-IRCCS, Troina, Italy. Electronic address:
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by cognitive decline and memory loss. A critical aspect of AD pathology is represented by oxidative stress, which significantly contributes to neuronal damage and death. Microglia and astrocytes, the primary glial cells in the brain, are crucial for managing oxidative stress and supporting neuronal function.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!