Development of survival responsiveness to brain-derived neurotrophic factor, neurotrophin 3 and neurotrophin 4/5, but not to nerve growth factor, in cultured motoneurons from chick embryo spinal cord.

J Neurosci

Instituto de Microbiología Bioquímica, Departamento de Microbiología y Genética, Consejo Superior de Investigaciones Científicas-Universidad de Salamanca, 37007 Salamanca, Spain.

Published: October 1998

During embryonic development, most neuronal populations undergo a process usually referred to as naturally occurring neuronal death. For motoneurons (MTNs) of the lumbar spinal cord of chick embryos, this process takes place in a well defined period of time, between embryonic days 6 and 10 (E6-E10). Neurotrophins (NTs) are the best characterized family of neurotrophic factors and exert their effects through activation of their specific Trk receptors. In vitro and in vivo studies have demonstrated that rodent motoneurons survive in response to BDNF, NT3, and NT4/5. In contrast, the trophic dependencies of chicken motoneurons have been difficult to elucidate, and various apparently conflicting reports have been published. In the present study, we describe how freshly isolated motoneurons from E5.5 chick embryos did not respond to any neurotrophin in vitro. Yet, because motoneurons were maintained alive in culture in the presence of muscle extract, they developed a delayed specific survival response to BDNF, NT3, and NT4/5 that is clearly dose-dependent, reaching saturation at doses of 100 pg/ml. This trophic response correlated with increasing expression of the corresponding functional receptors TrkB and TrkC. Moreover, TrkB receptor is able to become autophosphorylated and to activate classical intracellular signaling pathways such as the extracellular signal-regulated protein kinase when it is stimulated with its cognate ligand BDNF. Therefore, our results reconcile the reported differences between in vivo and in vitro studies on the ability of chicken MTNs to respond to some members of the neurotrophin family of trophic factors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6793005PMC
http://dx.doi.org/10.1523/JNEUROSCI.18-19-07903.1998DOI Listing

Publication Analysis

Top Keywords

spinal cord
8
chick embryos
8
response bdnf
8
bdnf nt3
8
nt3 nt4/5
8
motoneurons
6
development survival
4
survival responsiveness
4
responsiveness brain-derived
4
brain-derived neurotrophic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!