Gonadotropin-releasing hormone (GnRH) receptor expression is regulated by estradiol and GnRH itself. The objective of this experiment was to determine the extent to which low levels of estradiol, similar to those observed during the transition from the luteal to the follicular phase of the estrous cycle, and GnRH interact to regulate expression of GnRH receptors and GnRH receptor mRNA. Ewes were ovariectomized (OVX) at least 2 wk prior to initiation of the experiment, and the pituitary gland was surgically disconnected from the hypothalamus to remove ovarian and hypothalamic inputs to the pituitary. Within 24 h after hypothalamic-pituitary disconnection, ewes received pulses of GnRH (250 ng/pulse) every 2 h for 6 d. At the end of 6 d, ewes were randomly assigned to treatments in a 2 x 2 factorial arrangement as follows: half of the animals received a single estradiol implant and half received an empty implant (placebo). At the same time, animals also received one of the following treatments: (1) saline or (2) GnRH (100 ng/pulse/2 h). Additionally, one group of ewes was ovariectomized, but not subjected to hypothalamic-pituitary disconnection (OVX controls). Blood samples were collected 15 min prior to each pulse of GnRH or saline and at 15-min intervals for 1 h after each pulse until tissues were collected and concentrations of luteinizing hormone (LH) were determined. Anterior pituitaries were collected 24 h after implant insertion to quantitate steady-state amounts of GnRH receptor mRNA and numbers of GnRH receptors. Mean LH was greatest in ovariectomized control ewes compared to all other treatments (p < 0.05). Mean LH and LH pulse amplitude in the placebo and GnRH-treated group most closely mimicked LH secretion in ovariectomized control animals. Mean LH and LH pulse amplitude were similar between both GnRH-treated groups (p < 0.05). Mean LH and LH pulse amplitude were significantly lower in all animals treated with saline compared to OVX controls (p < 0.05). Treatment with an estradiol implant and pulsatile GnRH increased (p < 0.05) relative amounts of GnRH receptor mRNA and the number of GnRH receptors compared to all other treatments. There were no differences in GnRH receptor expression between the remaining treatment groups (p > 0.05). Therefore, in OVX ewes after hypothalamic-pituitary disconnection, low levels of estradiol and GnRH are required to increase GnRH receptor mRNA and GnRH receptor numbers. Since we only observed an increase in GnRH receptor expression in the presence of both estradiol and GnRH, we conclude that there is a synergistic interaction between these two hormones in the regulation of GnRH receptor expression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1385/ENDO:8:3:225 | DOI Listing |
Pharmaceuticals (Basel)
December 2024
College of Pharmacy, University of Illinois, Chicago, IL 60612, USA.
Overexpression of the gonadotropin-releasing hormone receptor (GnRH-R) plays a vital role in the advancement of reproductive malignancies such as ovarian, endometrial, and prostate cancer. Peptidomimetic GnRH antagonists are a substantial therapeutic development, providing fast and reversible suppression of gonadotropins by directly blocking GnRH-R. Unlike typical GnRH agonists, these antagonists prevent the early hormonal flare, have a faster onset of action, and have a lower risk of cardiovascular problems.
View Article and Find Full Text PDFPhysiol Behav
January 2025
University of Northern Parana (UNOPAR), Londrina, PR, Brazil.. Electronic address:
Undernutrition has increased worldwide in recent years and it is known that environmental factors to which individuals are exposed in early life can result in metabolic and reproductive changes that remain in adult life. In this context, the litter size expansion is a classic model used to induce undernutrition early in development. Thus, this study aimed to evaluate the effects of neonatal undernutrition induced by the litter size expansion on metabolic and reproductive parameters of female rats.
View Article and Find Full Text PDFAnal Chem
January 2025
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.
As the most common and lethal cancer of the female gonads, ovarian cancer (OC) has a grave impact on people's health. OC is asymptomatic, insidious in onset, difficult to diagnose and treat, fast-growing, and easy to metastasize and has poor prognosis and high mortality. How to detect OC as early as possible and treat it without side effects has become a challenging medical problem.
View Article and Find Full Text PDFComp Biochem Physiol A Mol Integr Physiol
January 2025
Neuroendocrinology Research Laboratory, Department of Studies in Zoology, Karnatak University, Dharwad 580 003, India. Electronic address:
This work aimed to investigate the response of cholecystokinin (CCK) to starvation and its impact on food intake and the reproductive axis of the tilapia Oreochromis mossambicus. The fish subjected to 21 days of starvation showed a significant decrease in CCK immunoreactivity in the hypothalamus, pituitary gland, and intestine. The administration of injections of 0.
View Article and Find Full Text PDFPhysiol Rev
January 2025
Department of Investigative Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom.
Kisspeptin and neurokinin B (NKB) play a key role in several physiological processes including in puberty, adult reproductive function including the menstrual cycle, as well as mediating the symptoms of menopause. Infundibular kisspeptin neurons, which co-express NKB, regulate the activity of gonadotropin releasing hormone (GnRH) neurons, and thus the physiological pulsatile secretion of GnRH from the hypothalamus. Outside of their hypothalamic reproductive roles, these peptides are implicated in several physiological functions including sexual behavior and attraction, placental function, and bone health.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!