Stumbling reactions in man: influence of corticospinal input.

Electroencephalogr Clin Neurophysiol

Swiss Paraplegic Center, University Hospital Balgrist, University of Zürich.

Published: June 1998

The aim of this study was to evaluate the degree of contribution of supraspinal input to the generation of the compensatory leg muscle activation following stance perturbation. Therefore, evoked motor response (EMR) input-output relations of two different motor tasks were compared at 3 distinct periods: (1) the basic period of muscular activity during standing, i.e. when no additional cortical or spinal activity due to the different tasks is to be expected, (2) the pre-movement period with low background activity, when different spinal and cortical inputs to the motoneuronal pool can be assumed and (3) the period of plateau EMG activity of compensatory and voluntary motor task. Transcranial magnetic stimulation (TMS) just below the motor threshold was applied randomly at 19 different time-intervals before and during the onset of stance perturbation and for comparison during an equivalent voluntary foot-dorsiflexion task. Recordings of electromyographic (EMG) activity from the tibialis anterior (TA) and corresponding ankle-joint movements were made from both legs. Forward-directed displacements were induced by randomly-timed ramp impulses of constant acceleration upon a moveable platform. For comparison, leg muscle EMG was recorded during isometric foot dorsiflexion during stance while leaning back against a support. The stance perturbations were followed by a compensatory response (CR) in the TA with a mean onset time of 81 ms. During the basic period of muscular activity and the period of plateau EMG activity there was no significant difference of the input-output relation between stance perturbation and the voluntary motor task. However, in the voluntary task compared with the CR, there was significantly greater input-output relation (facilitation) of the EMR in the TA following TMS, which may be related to an increased cortical influence. In contrast to this result of the CR following stance perturbation, a facilitation of the EMR was described for hand muscles under corresponding conditions of automatic compensation for muscle stretch, suggesting a transcortical reflex loop. This difference in the results from upper and lower extremity muscles favors the assumption of a predominantly spinal generation of the TA-CR following stance perturbation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0924-980x(98)00009-5DOI Listing

Publication Analysis

Top Keywords

stance perturbation
20
emg activity
12
leg muscle
8
basic period
8
period muscular
8
muscular activity
8
period plateau
8
plateau emg
8
voluntary motor
8
motor task
8

Similar Publications

Over 50% of individuals with lower limb loss report a fear of falling and avoiding daily activities partly due to a lack of plantar sensation. Providing direct somatosensory feedback via neural stimulation holds promise for addressing this issue. In this study, three individuals with lower limb loss received a sensory neuroprosthesis (SNP) that provided plantar somatosensory feedback corresponding to prosthesis-floor interactions perceived as arising from the missing foot generated by electrically activating the peripheral nerves in the residuum.

View Article and Find Full Text PDF

Characterizing the vestibular control of balance in the intrinsic foot muscles.

Gait Posture

December 2024

School of Health and Exercise Sciences, The University of British Columbia Okanagan, Kelowna, British Columbia, Canada. Electronic address:

Background: To maintain standing balance, vestibular cues are processed and integrated with other sensorimotor signals to produce appropriate motor adjustments. Whole-body vestibular-driven postural responses are context-dependent and transformed based upon head and foot posture. Previous reports indicate the importance of intrinsic foot muscles during standing, but it is unclear how vestibular-driven responses of these muscles are modulated by alterations in stability and head posture.

View Article and Find Full Text PDF

Among control methods for robotic exoskeletons, biologically inspired control based on central pattern generators (CPGs) offer a promising approach to generate natural and robust walking patterns. Compared to other approaches, like model-based and machine learning-based control, the biologically inspired control provides robustness to perturbations, requires less computational power, and does not need system models or large learning datasets. While it has shown effectiveness, a comprehensive evaluation of its user experience is lacking.

View Article and Find Full Text PDF

Balance control deficits resulting from ankle sprains are central to chronic ankle instability (CAI) and its persistent symptoms. This study aimed to identify differences in balance control between individuals with CAI and healthy controls (HC) using challenging single-leg balance tasks. Twenty-three CAI and 23 HC participants performed balance tasks on a force plate that either remained static or moved mediolaterally.

View Article and Find Full Text PDF

Balance recovery schemes following mediolateral gyroscopic moment perturbations during walking.

PLoS One

December 2024

Lauflabor Locomotion Laboratory, Institute of Sport Science, Centre for Cognitive Science, Technische Universität Darmstadt, Hessen, Germany.

Maintaining balance during human walking hinges on the exquisite orchestration of whole-body angular momentum (WBAM). This study delves into the regulation of WBAM during gait by examining balance strategies in response to upper-body moment perturbations in the frontal plane. A portable Angular Momentum Perturbator (AMP) was utilized in this work, capable of generating perturbation torques on the upper body while minimizing the impact on the center of mass (CoM) excursions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!