Background: Hepatitis C virus (HCV) NS3 proteinase activity is required for the release of HCV nonstructural proteins and is thus a potential antiviral target. The enzyme requires a protein cofactor NS4A, located downstream of NS3 on the polyprotein, for activation and efficient processing.
Objectives: Comparison of the proteinase three-dimensional structure before and after NS4A binding should help to elucidate the mechanism of NS4A-dependent enzyme activation.
Study Design: We determined the crystal structure of NS3 proteinase of HCV BK isolate (genotype 1b; residues 1-189) and also the crystal structure of this proteinase complexed with HCV BK-NS4A (residues 21-34).
Results: The core region (residues 30-178) of the enzyme without cofactor (NS3P) or with bound cofactor (NS3P/4A) is folded into a trypsin-like conformation and the substrate P1 specificity pocket is essentially unchanged. However, the D1-E1 beta-loop shifts away from the cofactor binding site in NS3P/4A relative to NS3P, thereby accommodating NS4A. One result is that catalytic residues His-57 and Asp-81 move closer to Ser-139 and their sidechains adopt more 'traditional' (trypsin-like) orientation. The N-terminus (residues 1-30), while extended in NS3P, is folded into an alpha-helix and beta-strand that cover the bound cofactor of NS3P/4A. A new substrate-binding surface is formed from both the refolded N-terminus and NS4A, potentially affecting substrate residues immediately downstream of the cleavage site.
Conclusions: Direct comparison of the crystal structures of NS3P and NS3P/4A shows that the binding of NS4A improves the anchoring and orientation of the enzyme's catalytic triad. This is consistent with the enhancement of NS3P's weak residual activity upon NS4A binding. There is also significant refolding of the enzyme's N-terminus which provides new interactions with P'-side substrate residues. The binding surface for P'-side substrate residues, including the P1 specificity pocket, changes little after NS4A binding. In summary, we observe a structural basis for improved substrate turnover and affinity that follows complexation of NS3P with its NS4A cofactor.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0928-0197(98)00036-1 | DOI Listing |
Int J Mol Sci
November 2024
Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
Japanese encephalitis virus (JEV) NS2B-NS3 is a protein complex composed of NS3 proteases and an NS2B co-factor. The N-terminal protease domain (180 residues) of NS3 (NS3(pro)) interacts directly with a central 40-amino acid hydrophilic domain of NS2B (NS2B(H)) to form an active serine protease. In this study, the recombinant NS2B(H)-NS3(pro) proteases were prepared in and used to compare the enzymatic activity between genotype I (GI) and III (GIII) NS2B-NS3 proteases.
View Article and Find Full Text PDFBioorg Chem
December 2024
São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil. Electronic address:
J Virol
December 2024
State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.
A cellular protein, non-POU-domain-containing octamer binding protein (NONO), bound to the replication complex of Japanese encephalitis virus (JEV) by directly interacting with the viral 3' UTR RNA and NS3 protein. These interactions were also identified in West Nile virus (WNV) and Zika virus (ZIKV). The infection of JEV or the expression of JEV NS3 protein in cells could induce relocation of NONO protein from the nucleus to the cytoplasm.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan. Electronic address:
Dengue, a mosquito-borne viral infection caused by the dengue virus (DENV), is a global health challenge. Annually, approximately 400 million cases are reported worldwide, signaling a persistent upward trend from previous years and projected a manifold increase in the future. There is a growing need for innovative and integrated approaches aimed at effective disease management.
View Article and Find Full Text PDFJ Phys Chem B
November 2024
Department of Biophysics, Faculty of Science, Cairo University, Giza 12613, Egypt.
The global prevalence of dengue virus (DENV), a widespread flavivirus, has led to varied epidemiological impacts, economic burdens, and health consequences. The alarming increase in infections is exacerbated by the absence of approved antiviral agents against the DENV. Within flaviviruses, the NS3/NS2B serine protease plays a pivotal role in processing the viral polyprotein into distinct components, making it an attractive target for antiviral drug development.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!