Pregnant sheep with a microdialysis probe implanted in the fetal cerebral cortex were used to determine if nitrate and nitrite anions (nitrate/nitrite) could be quantitated in the microdialysate as an indirect index of in vivo nitric oxide formation. Pregnant ewes (term, about 147 days) were surgically instrumented at gestational day (GD) 90 (n = 3; preterm) and GD 121 (n = 3; nearterm). Three days later, following an overnight probe equilibration period, five dialysate samples were collected continuously on ice at 1-h intervals (infusion rate of 1 (microl/min). The nitrate/nitrite concentration was determined by reducing a 10-microl aliquot of each dialysate fraction with hot acidic vanadium followed by chemiluminescence quantitation of the nitric oxide product. The lower limit of quantitative sensitivity of the method is 25 picomoles. Nitrate/nitrite concentration was 16.6+/-7.3 microM for the preterm fetus and 19.7+/-1.9 microM for the nearterm fetus. The data demonstrate that nitrate/nitrite, as an index of in vivo nitric oxide formation, can be quantitated in microdialysate samples collected from the intact fetal sheep cerebral cortex.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s1056-8719(98)00007-0 | DOI Listing |
Iran J Med Sci
December 2024
Department of Medical Physiology, College of Medicine, Zagazig University, Al-Sharquia, Egypt.
Background: The risk of cardiovascular disease (CVD) in patients with chronic kidney disease (CKD) is estimated to be far greater than that in the general population. Adropin regulates endothelial function and may play a role in the pathogenesis of CVD. Angiotensin-converting enzyme inhibitor (ACEI) treatment was reported to have a protective effect on both renal and cardiovascular function.
View Article and Find Full Text PDFChem Sci
January 2025
Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health & Science University 3181 SW Sam Jackson Park Road Portland Oregon 97239 USA
Mycobacterial hemerythrin-like proteins (HLPs) are important for the survival of pathogens in macrophages. Their molecular mechanisms of function remain poorly defined but recent studies point to their possible role in nitric oxide (NO) scavenging. Unlike any nonheme diiron protein studied so far, the diferric HLP from (-HLP) reacts with NO in a multistep fashion to consume four NO molecules per diiron center.
View Article and Find Full Text PDFAnn Neurosci
October 2024
Department of Pathology, King George's Medical University, Lucknow, Uttar Pradesh, India.
Background: Parkinson's disease (PD) is characterized by dopaminergic (DA) neuron loss, Lewy body build-up, and motor dysfunction. One of the primary pathogenic mechanisms of PD development is autophagy dysfunction and nitric oxide-mediated neurotoxicity.
Purpose: The current study focuses on autophagy and nitric oxide (NO) signaling roles in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-intoxicated PD mice and their protection by their modulators.
Front Aging
January 2025
Molecular Medicine, NSW Health Pathology, John Hunter Hospital, Newcastle, NSW, Australia.
Aging is a complex process marked by various changes at both cellular and systemic levels, impacting the functioning and lifespan of organisms. Over time, researchers have pinpointed several significant hallmarks of aging that lead to the gradual deterioration of tissue function, regulation, and homeostasis associated with aging in humans. Despite this, the intricate interactions and cumulative effects of these hallmarks are still mostly uncharted territory.
View Article and Find Full Text PDFFront Nutr
January 2025
School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
Background: Numerous studies have shown a link between circadian rhythms disruptions and a higher risk of obesity. This article aims to conduct an extensive bibliometric analysis to deepen our understanding of the relationship between circadian rhythms and obesity.
Methods: The literature related to the circadian rhythm of obesity, published from the inception of the Web of Science Core Collection (WoSCC) until June 30, 2024, was extracted from the WoSCC databases (SCIE, SSCI, ESCI).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!