The discovery of streptomycin in 1944 had given rise to great flowering of chemotherapy for tuberculosis. The times which triple treatment of SM.PAS.INH after the temporal time of SM.PAS had been standard regimens on initial treatment had continued for more than twenty years. The shortening of duration for chemotherapy had become possible by the introduction of RFP, and the duration had reduced to one fourth compared with that of the regimens till then by the addition of PZA for two months at the beginning of treatment on the initial treatment cases. In this paper, historical aspects of early and present-day chemotherapy of tuberculosis and the reports of main studies have been summarized, and pharmacokinetics of INH, action of antituberculous drugs in short-course chemotherapy, MDR-TB and biological response modifiers for treatment of tuberculosis, etc. has been reviewed. It is urgently awaited that more new drugs without cross resistance to previous drugs will be developed for the more shortening of the duration and the improvement of the treatment for MDR-TB.
Download full-text PDF |
Source |
---|
BMJ Open
January 2025
Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada.
Introduction: Non-adherence to tuberculosis (TB) treatment poses a significant challenge to effective TB management globally and is a major contributor to the emergence of multidrug-resistant TB. Although adherence to TB treatment has been widely studied, a comprehensive evaluation of the comparative levels of adherence in high- versus low-TB burden settings remains lacking. The objective of this systematic review and meta-analysis is to assess the levels of adherence to TB treatment in high-TB burden countries compared to low-burden countries.
View Article and Find Full Text PDFTuberculosis (Edinb)
January 2025
Latvian Biomedical Research and Study Centre, Ratsupites street 1, k-1, Riga, LV-1067, Latvia; Riga Stradiņš University, Pharmacogenetic and Precision Medicine Laboratory, Konsula street 21, Riga, LV-1007, Latvia. Electronic address:
Biomarker research characterising the effect of anti-tuberculosis (TB) chemotherapy on systemic body response is still limited. In this study, we aimed to investigate fluctuations in circulating cell-free mitochondrial DNA (ccf-mtDNA) and circulating cell-free nuclear DNA (ccf-nDNA) copy number (CN) in blood plasma of patients with drug-susceptible TB (DS-TB) and to decipher factors related to these fluctuations. The results showed considerable changes in ccf-mtDNA CN in plasma samples before drug intake and 2 and 6 h afterwards, with high inter patient variability at each time point.
View Article and Find Full Text PDFViruses
January 2025
College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA.
Background: HIV and tuberculosis (TB) co-infection poses a significant health challenge, particularly when involving the central nervous system (CNS), where it leads to severe morbidity and mortality. Current treatments face challenges such as drug resistance, immune reconstitution inflammatory syndrome (IRIS), and persistent inflammation. Glutathione (GSH) has the therapeutic potential to enhance treatment outcomes by improving antibiotic efficacy, reducing inflammation, and mitigating immune dysfunction.
View Article and Find Full Text PDFMicroorganisms
December 2024
Bach Institute of Biochemistry, Fundamentals of Biotechnology, Federal Research Center, Russian Academy of Sciences, Moscow 119071, Russia.
(Mtb) is one of the most successful bacterial pathogens in human history. Even in the antibiotic era, Mtb is widespread and causes millions of new cases of tuberculosis each year. The ability to disrupt the host's innate and adaptive immunity, as well as natural persistence, complicates disease control.
View Article and Find Full Text PDFGenes (Basel)
January 2025
Department of Pathology, Genetics and Evolution, Federal University of Triângulo Mineiro, Uberaba 38025-180, Brazil.
Background/objectives: Pharmacogenetics (PGx) aims to identify individuals more likely to suffer from adverse reactions or therapeutic failure in drug treatments. However, despite most of the evidence in this area being from European populations, some diseases have also been neglected, such as HIV infection, malaria, and tuberculosis. With this review, we aim to emphasize which pharmacogenetic tests are ready to be implemented in treating neglected diseases that have some evidence and call attention to what is missing for these three diseases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!