The nuclear pore complex is the largest supramolecular complex that assembles in the eukaryotic cell. This structure is highly dynamic and must disassemble prior to mitosis and reassemble after the event. The directed movement of macromolecules into and out of the nucleus occurs through the nuclear pore complex, a potentially regulatory point for translocation. Using biochemical and genetic approaches, several nuclear pore complex proteins from yeast and vertebrates have been well characterized. Although very little is known about plant nuclear pore proteins, research is providing new information that indicates that plant nuclear pore complexes may have some unique features.
Download full-text PDF |
Source |
---|
Adv Mater
January 2025
Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany.
The rapid advancement of covalent organic frameworks (COFs) in recent years has firmly established them as a new class of molecularly precise and highly tuneable porous materials. However, compared to other porous materials, such as zeolites and metal-organic frameworks, the successful integration of hierarchical porosity into COFs remains largely unexplored. The challenge lies in identifying appropriate synthetic methods to introduce secondary pores without compromising the intrinsic structural porosity of COFs.
View Article and Find Full Text PDFDiscov Nano
January 2025
Institute of Physiology II, University of Münster, Robert-Koch-Str. 27b, 48149, Münster, Germany.
Metastatic cancer cells undergo metabolic reprogramming, which involves changes in the metabolic fluxes, including endocytosis, nucleocytoplasmic transport, and mitochondrial metabolism, to satisfy their massive demands for energy, cell division, and proliferation compared to normal cells. We have previously demonstrated the ability of two different types of compounds to interfere with linchpins of metabolic reprogramming, Pitstop-2 and 1,6-hexanediol (1,6-HD). 1,6-HD disrupts glycolysis enzymes and mitochondrial function, enhancing reactive oxygen species production and reducing cellular ATP levels, while Pitstop-2 impedes clathrin-mediated endocytosis and small GTPases activity.
View Article and Find Full Text PDFClin Kidney J
January 2025
Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy, Beijing, China.
Nucleoporins, as major components of nuclear pore complex, have been recently discovered to participate in organ development. Here, we report a young female patient with nephrotic proteinuria resistant to immune suppressant treatment and congenital ovarian insufficiency. Renal pathology confirmed focal segmental glomerulosclerosis and whole-exome sequencing revealed compound heterozygous mutations in Nucleoporin 160 (), NM_015231.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
KU Leuven, Materials engineering, Kasteelpark Arenberg 44 bus 2450, 3001 LEUVEN Belgium, LEUVEN, BELGIUM.
Traditional polymer solid electrolytes (PSEs) suffer from low Li conductivity, poor kinetics and safety concerns. Here, we present a novel porous MOF glass gelled polymer electrolyte (PMG-GPE) prepared via a top-down strategy, which features a unique three-dimensional interconnected graded-aperture structure for efficient ion transport. Comprehensive analyses, including time-of-flight secondary ion mass spectrometry (TOF-SIMS), Solid-state 7Li magic-angle-spinning nuclear magnetic resonance (MAS-NMR), Molecular Dynamics (MD) simulations, and electrochemical tests, quantify the pore structures, revealing their relationship with ion conductivity that increases and then decreases as macropore proportion rises.
View Article and Find Full Text PDFACS Omega
January 2025
School of Safety Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China.
Hot dry rock (HDR) geothermal development faces challenges due to the difficulty of stimulating fluid flow and heat-exchange fracture channels within deep, low-porosity, and low-permeability reservoirs. A liquid nitrogen cyclic cold shock method was proposed, using liquid nitrogen as a fracturing fluid. The large temperature difference between the liquid nitrogen and the hot rock induces thermal stress, forming a complex pore-fracture network.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!