By confocal laser scanning microscopy (CLSM) we have studied the membrane fusion between cationic liposomes and the endosome membranes involved in gene transfection mediated by cationic liposomes. Antisense oligonucleotides were transferred by cationic liposomes with a cationic cholesterol derivative, cholesteryl-3beta-carboxyamidoethylenedimethylamine (I). Cationic liposomes were made by a mixture of the derivative I and DOPE. The intracellular distribution of fluorescein-conjugated antisense oligonucleotides (phosphorothioate) was studied by CLSM. The images showed that the antisense oligonucleotides were preferentially transferred into the nucleus of target cells (NIH3T3, COS-7 and HeLa cells) by the liposomes with derivative I. However, their transfection was completely blocked by nigericin which was able to dissipate the pH gradient across the endosome membranes, although the liposome/DNA complex was found in the cytoplasm of the target cells. This was quite in contrast with the fluorescence images of the target cells treated with wortmannin, an inhibitor of endocytosis. The results suggest that at least two steps are effective for gene transfection mediated by the cationic liposomes with cationic cholesterol derivatives. One is the endocytosis of the liposome/DNA complex into the target cells and the other is the removal of antisense oligonucleotides (plasmid DNAs) from the complex in the endosomes. The latter step was preferentially preceded by the membrane fusion between the cationic liposomes and the endosome membranes at around pH 5.0.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0014-5793(98)00837-0 | DOI Listing |
Mater Today Bio
February 2025
Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao, 066004, China.
Immunotherapy is a cornerstone in cancer treatment, celebrated for its precision, ability to eliminate residual cancer cells, and potential to avert tumor recurrence. Nonetheless, its effectiveness is frequently undermined by the immunosuppressive milieu created by tumors. This study presents a novel nanogel-based drug delivery system, DOX-4PI@CpG@Lipo@Gel (DPCLG), engineered to respond to Matrix Metallopeptidase-2 (MMP-2)-a protease abundant in the tumor microenvironment (TME).
View Article and Find Full Text PDFBiomaterials
January 2025
School of Life Science, Chongqing University, Chongqing, 400044, China. Electronic address:
In-situ tumor vaccination remains challenging due to difficulties in the exposure and presentation of tumor-associated neoantigens (TANs). In view of the central role of lipid metabolism in cell fate determination and tumor-immune cell communication, here we report a photo-controlled lipid metabolism nanoregulator (PLMN) to achieve robust in-situ adjuvant-free vaccination, which is constructed through hierarchically integrating photothermal-inducible arachidonate 15-lipoxygenase (ALOX15)-expressing plasmids, cypate and FIN56 into cationic liposomes. Near-infrared light (NIR) stimulation triggers on-demand ALOX15 editing and causes excessive accumulation of downstream pro-ferroptosis lipid metabolites.
View Article and Find Full Text PDFIn Vitro Cell Dev Biol Anim
January 2025
Department of Biology, Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON, N2L 3C5, Canada.
Long dsRNA induces the expression of type I interferons (IFNs) and IFN-stimulated genes (ISGs) to establish an antiviral state. When induced prophylactically, this antiviral state can reduce the severity and mortality of viral infections. One of the limiting factors in delivering dsRNA in animal models is the lack of an effective carrier that protects the dsRNA from degradation in the extracellular space.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Research Institute for Systems Biology and Medicine, 18 Nauchniy Proezd, Moscow 117246, Russia.
Gene transfection is a fundamental technique in the fields of biological research and therapeutic innovation. Due to their biocompatibility and membrane-mimetic properties, lipid vectors serve as essential tools in transfection. The successful delivery of genetic material into the cytoplasm is contingent upon the fusion of the vector and cellular membranes, which enables hydrophilic polynucleic acids to traverse the hydrophobic barriers of two intervening membranes.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Physical and Chemical Sciences, Università degli Studi dell'Aquila, L'Aquila 67100, Italy.
Solid magnetic liposomes (ML, nanocomposites comprising lipid bilayers that incorporate magnetic nanoparticles) may be used in wastewater remediation: the lipid bilayer creates an environment where organic pollutants preferentially partition instead of water and the manipulation of ML with an external magnet enables an easy recovery from water. This study aimed to assess the system's potential for water remediation, focusing on ML ability to remove common pollutants in industrial wastewater. Specifically, alkylphenol ethoxylates (APEO) were used as the archetype for organic pollutants.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!