Mannan-binding lectin (MBL) is an acute-phase protein which activates complement at the level of C4 and C2. We recently reported that the alternative pathway also is required for haemolysis via this 'lectin pathway' in human serum. CRP is another acute-phase reactant which activates the classical pathway, but CRP also inhibits the alternative pathway on surfaces to which it binds. Since serum levels of both proteins generally increase with inflammation and tissue necrosis, it was of interest to determine the effect of CRP on cytolysis via the lectin pathway. We report here that although CRP increases binding of C4 to MBL-sensitized erythrocytes, which in turn enhances lectin pathway haemolysis, it inhibits MBL-initiated cytolysis by its ability to inhibit the alternative pathway. This inhibition is characterized by increased binding of complement control protein H and decreased binding of C3 and C5 to the indicator cells, which in turn is attributable to the presence of CRP. Immunodepletion of H leads to greatly enhanced cytolysis via the lectin pathway, and this cytolysis is no longer inhibited by CRP. These results indicate that CRP regulates MBL-initiated cytolysis on surfaces to which both proteins bind by modulating alternative pathway recruitment through H, pointing to CRP as a complement regulatory protein, and suggesting a co-ordinated role for these proteins in complement activation in innate immunity and the acute-phase response.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1905066 | PMC |
http://dx.doi.org/10.1046/j.1365-2249.1998.00663.x | DOI Listing |
Mol Biol Rep
January 2025
Department of Orthopedic Surgery, Institute of Bone Tumor, Shanghai Tenth People's Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai, 200092, China.
Recently, there has been burgeoning interest in the involvement of cholesterol metabolism in cancer. Squalene epoxidase (SQLE), as a critical rate-limiting enzyme in the cholesterol synthesis pathway, has garnered attention due to its overexpression in various cancer types, thereby significantly impacting tumor prognosis and resistance mechanisms. Firstly, SQLE contributes to unfavorable prognosis through diverse mechanisms, encompassing modulation of the PI3K/AKT signaling pathway, manipulation of the cancer microenvironment, and participation in ferroptosis.
View Article and Find Full Text PDFJ Orthop Sports Phys Ther
February 2025
This editorial draws an analogy between the literary genre of the 'whodunit' and the complexities of patellofemoral pain (PFP). Traditionally, PFP management has centered on biomechanical factors such as hip muscle weakness, foot pronation, and patellar tracking issues. However, long-term outcomes often remain unsatisfactory, highlighting the need for alternative strategies.
View Article and Find Full Text PDFInorg Chem
January 2025
Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi 980-8577, Japan.
This study introduces a new method for synthesizing Cu-containing metastable phases through ion exchange. Traditionally, CuCl has been used as a Cu ion source for solid-state ion exchanges; however, its thermodynamic driving force is often insufficient for complete ion exchange with Li-containing precursors. First-principles calculations have identified CuSO and CuPO as more powerful alternatives, providing a higher driving force than CuCl.
View Article and Find Full Text PDFJ Am Heart Assoc
January 2025
Research Institute of Internal Medicine, Oslo University Hospital Oslo Norway.
Background: Complement activation may promote atherosclerosis. Yet, data on the to which extent complement, and more specifically the alternative complement pathway, is activated in patients with carotid atherosclerosis and related to adverse outcome in these patients, are scarce.
Methods And Results: We measured, by ELISA, plasma levels of factor D, properdin, C3bBbP (C3 convertase), and factor H in patients with advanced carotid atherosclerosis in a (n=324) and in a (n=206) cohort in relation to adverse outcome (mean follow-up 7.
PI31 ( P roteasome Inhibitor of 31 ,000 Da) is a 20S proteasome-binding protein originally identified as an inhibitor of 20S proteasome activity. Although recent studies have provided a detailed structural basis for this activity, the physiologic significance of PI31-mediated proteasome inhibition remains uncertain and alternative cellular roles for PI31 have been described. Here we report a role for PI31 as a positive regulator for the assembly of the 20S immuno-proteasome (20Si), a compositionally and functionally distinct isoform of the proteasome that is poorly inhibited by PI31.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!